AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

Overview

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer is a programmable timer for 12V devices such as lighting, solenoid valves or pumps not only for aquariums. It has three switchable channels for currents up to 2A each and up to 5A in total. Connected lighting can be dimmed if desired and slowly faded in and out to simulate sunrises and sunsets. The internal RTC of the ATtiny is used as a clockwork in conjunction with a 32.768kHz crystal. A backup battery keeps the clock running even if the external power supply is interrupted. Settings are made using three buttons and the OLED display.

pic1.jpg

Compiling and Uploading the Firmware

If using the Arduino IDE

  • Open your Arduino IDE.
  • Make sure you have installed megaTinyCore.
  • Go to Tools -> Board -> megaTinyCore and select ATtiny1614/1604/814/804/414/404/214/204.
  • Go to Tools and choose the following board options:
    • Chip: ATtiny1614 or ATtiny814 or ATtiny414
    • Clock: 5 MHz internal
    • Leave the rest at the default settings.
  • Connect your programmer to your PC and to the UPDI header on the board.
  • Go to Tools -> Programmer and select your UPDI programmer.
  • Go to Tools -> Burn Bootloader to burn the fuses.
  • Open the sketch and click Upload.

If using the makefile (Linux/Mac)

  • Connect your programmer (jtag2updi or SerialUPDI) to your PC and to the UPDI header on the board.
  • Download AVR 8-bit Toolchain and extract the sub-folders (avr, bin, include, ...) to /software/tools/avr-gcc. To do this, you have to register for free with Microchip on the download site.
  • Open the makefile and set the programmer and port (default is serialupdi on /dev/ttyUSB0).
  • Open a terminal.
  • Navigate to the folder with the makefile and the sketch.
  • Run "make install" to compile, burn the fuses and upload the firmware.

The device time is automatically set to the current time (compilation time) when the firmware is uploaded. Install the CR1220, CR1225 or LIR1220 (recommended) buffer battery before disconnecting the device.

Operating Instructions

  1. Connect the devices to be controlled to the AquaTimer using the screw terminals. Pay attention to the correct polarity!
  2. Connect the AquaTimer to a 12V power supply via the DC barrel connector.
  3. Press the "SET" button to get to the main menu. Adjust the values according to your wishes.

References, Links and Notes

  1. ATtiny814 Datasheet

pic2.jpg pic3.png pic4.jpg

License

license.png

This work is licensed under Creative Commons Attribution-ShareAlike 3.0 Unported License. (http://creativecommons.org/licenses/by-sa/3.0/)

Owner
Stefan Wagner
Stefan Wagner
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Position detection system of mobile robot in the warehouse enviroment

Autonomous-Forklift-System About | GUI | Tests | Starting | License | Author | 🎯 About An application that run the autonomous forklift paletization a

Kamil Goś 1 Nov 24, 2021
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. The related paper is avai

26 Dec 13, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022