Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Related tags

Data Analysistuplex
Overview

Tuplex: Blazing Fast Python Data Science

Build Status License Supported python versions Gitter PyPi Downloads

Website Documentation

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set. Under the hood, Tuplex is based on data-driven compilation and dual-mode processing, two key techniques that make it possible for Tuplex to provide speed comparable to a pipeline written in hand-optimized C++.

You can join the discussion on Tuplex on our Gitter community or read up more on the background of Tuplex in our SIGMOD'21 paper.

Contributions welcome!

Contents

Installation

To install Tuplex, you can use a PyPi package for Linux, or a Docker container for MacOS which will launch a jupyter notebook with Tuplex preinstalled.

Docker

docker run -p 8888:8888 tuplex/tuplex

PyPI

pip install tuplex

Building

Tuplex is available for MacOS and Linux. The current version has been tested under MacOS 10.13-10.15 and Ubuntu 18.04 and 20.04 LTS. To install Tuplex, simply install the dependencies first and then build the package.

MacOS build from source

To build Tuplex, you need several other packages first which can be easily installed via brew.

brew install [email protected] boost boost-python3 aws-sdk-cpp pcre2 antlr4-cpp-runtime googletest gflags yaml-cpp celero
python3 -m pip cloudpickle numpy
python3 setup.py install

Ubuntu build from source

To faciliate installing the dependencies for Ubuntu, we do provide two scripts (scripts/ubuntu1804/install_reqs.sh for Ubuntu 18.04, or scripts/ubuntu2004/install_reqs.sh for Ubuntu 20.04). To create an up to date version of Tuplex, simply run

./scripts/ubuntu1804/install_reqs.sh
python3 -m pip cloudpickle numpy
python3 setup.py install

Customizing the build

Besides building a pip package, cmake can be also directly invoked. To compile the package via cmake

mkdir build
cd build
cmake ..
make -j$(nproc)

The python package corresponding to Tuplex can be then found in build/dist/python with C++ test executables based on googletest in build/dist/bin.

To customize the cmake build, the following options are available to be passed via -D:

option values description
CMAKE_BUILD_TYPE Release (default), Debug, RelWithDebInfo, tsan, asan, ubsan select compile mode. Tsan/Asan/Ubsan correspond to Google Sanitizers.
BUILD_WITH_AWS ON (default), OFF build with AWS SDK or not. On Ubuntu this will build the Lambda executor.
GENERATE_PDFS ON, OFF (default) output in Debug mode PDF files if graphviz is installed (e.g., brew install graphviz) for ASTs of UDFs, query plans, ...
PYTHON3_VERSION 3.6, ... when trying to select a python3 version to build against, use this by specifying major.minor. To specify the python executable, use the options provided by cmake.
LLVM_ROOT_DIR e.g. /usr/lib/llvm-9 specify which LLVM version to use
BOOST_DIR e.g. /opt/boost specify which Boost version to use. Note that the python component of boost has to be built against the python version used to build Tuplex

For example, to create a debug build which outputs PDFs use the following snippet:

cmake -DCMAKE_BUILD_TYPE=Debug -DGENERATE_PDFS=ON ..

Example

Tuplex can be used in python interactive mode, a jupyter notebook or by copying the below code to a file. To try it out, run the following example:

from tuplex import *
c = Context()
res = c.parallelize([1, 2, None, 4]).map(lambda x: (x, x * x)).collect()
# this prints [(1, 1), (2, 4), (4, 16)]
print(res)

More examples can be found here.

License

Tuplex is available under Apache 2.0 License, to cite the paper use:

@inproceedings{10.1145/3448016.3457244,
author = {Spiegelberg, Leonhard and Yesantharao, Rahul and Schwarzkopf, Malte and Kraska, Tim},
title = {Tuplex: Data Science in Python at Native Code Speed},
year = {2021},
isbn = {9781450383431},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3448016.3457244},
doi = {10.1145/3448016.3457244},
booktitle = {Proceedings of the 2021 International Conference on Management of Data},
pages = {1718–1731},
numpages = {14},
location = {Virtual Event, China},
series = {SIGMOD/PODS '21}
}

(c) 2017-2021 Tuplex contributors

Owner
Tuplex
Python Data Science at Native Code Speed
Tuplex
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Data exploration done quick.

Pandas Tab Implementation of Stata's tabulate command in Pandas for extremely easy to type one-way and two-way tabulations. Support: Python 3.7 and 3.

W.D. 20 Aug 27, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data.

The yt Project yt is an open-source, permissively-licensed Python library for analyzing and visualizing volumetric data. yt supports structured, varia

The yt project 367 Dec 25, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Evaluation of a Monocular Eye Tracking Set-Up

Evaluation of a Monocular Eye Tracking Set-Up As part of my master thesis, I implemented a new state-of-the-art model that is based on the work of Che

Pascal 19 Dec 17, 2022
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 03, 2023
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
Get mutations in cluster by querying from LAPIS API

Cluster Mutation Script Get mutations appearing within user-defined clusters. Usage Clusters are defined in the clusters dict in main.py: clusters = {

neherlab 1 Oct 22, 2021
Aggregating gridded data (xarray) to polygons

A package to aggregate gridded data in xarray to polygons in geopandas using area-weighting from the relative area overlaps between pixels and polygons. Check out the binder link above for a sample c

Kevin Schwarzwald 42 Nov 09, 2022
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023