vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

Overview

python   MIT license  

vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models, such as:

  • T-test: verify if mean of distribution is zero;
  • Kupiec Test (1995): verify if the number of violations is consistent with the violations predicted by the model;
  • Berkowitz Test (2001): verify if conditional distributions of returns "GARCH(1,1)" used in the VaR Model is adherent to the data. In this specific test, we do not observe the whole data, only the tail;
  • Christoffersen and Pelletier Test (2004): also known as Duration Test. Duration is time between violations of VaR. It tests if VaR Model has quickly response to market movements by consequence the violations do not form volatility clusters. This test verifies if violations has no memory i.e. should be independent.

Installation

Using pip

You can install using the pip package manager by running:

pip install vartests

Alternatively, you could install the latest version directly from Github:

pip install https://github.com/rafa-rod/vartests/archive/refs/heads/main.zip

Why vartests is important?

After VaR calculation, it is necessary to perform statistic tests to evaluate the VaR Models. To select the best model, they should be validated by backtests.

Example

First of all, lets read a file with a PnL (distribution of profit and loss) of a portfolio in which also contains the VaR and its violations.

import pandas as pd

data = pd.read_excel("Example.xlsx", index_col=0)
violations = data["Violations"]
pnl = data["PnL"] 
data.sample(5)

The dataframe looks like:

' |     PnL       |      VaR        |   Violations |
  | -889.003707   | -2554.503872    |            0 |
  | -2554.503872  | -2202.221691    |            1 | 
  | -887.527423   | -2193.692570    |            0 |  
  | -274.344126   | -2160.290746    |            0 | 
  | 1376.018638   | -5719.833100    |            0 |'

Not all tests should be applied to the VaR Model. Some of them its applied whether the VaR Model has assumption of zero mean or follow a specific distribution. So you should test the data:

import vartests

vartests.zero_mean_test(pnl.values, conf_level=0.95)

This assumption is commom used in parametric VaR like EWMA and GARCH Models. Besides that, is necessary check assumption of distribution. So you should test with Berkowitz (2001):

import vartests

vartests.berkowtiz_tail_test(pnl, volatility_window=252, var_conf_level=0.99, conf_level=0.95)

The following tests should be used to any kind of VaR Models.

import vartests

vartests.kupiec_test(violations, var_conf_level=0.99, conf_level=0.95)

vartests.duration_test(violations, conf_level=0.95)

If you want to see the failure ratio of the VaR Model, just type:

import vartests

vartests.failure_rate(violations)
Owner
RAFAEL RODRIGUES
Quantitative Finance, data science, optimisation, Python, julia, R.
RAFAEL RODRIGUES
๐Ÿงช Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

๐Ÿงช๐Ÿ“ˆ ๐Ÿ. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation Overview Consider the scenario in which advertisement

Manuel Bressan 2 Nov 18, 2021
A meta plugin for processing timelapse data timepoint by timepoint in napari

napari-time-slicer A meta plugin for processing timelapse data timepoint by timepoint. It enables a list of napari plugins to process 2D+t or 3D+t dat

Robert Haase 2 Oct 13, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 04, 2023
A Python module for clustering creators of social media content into networks

sm_content_clustering A Python module for clustering creators of social media content into networks. Currently supports identifying potential networks

72 Dec 30, 2022
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022