Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Overview

Lingvo

PyPI Python

Documentation

License

What is it?

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

A list of publications using Lingvo can be found here.

Table of Contents

Releases

PyPI Version Commit
0.10.0 075fd1d88fa6f92681f58a2383264337d0e737ee
0.9.1 c1124c5aa7af13d2dd2b6d43293c8ca6d022b008
0.9.0 f826e99803d1b51dccbbbed1ef857ba48a2bbefe
Older releases

PyPI Version Commit
0.8.2 93e123c6788e934e6b7b1fd85770371becf1e92e
0.7.2 b05642fe386ee79e0d88aa083565c9a93428519e

Details for older releases are unavailable.

Major breaking changes

NOTE: this is not a comprehensive list. Lingvo releases do not offer any guarantees regarding backwards compatibility.

HEAD

Nothing here.

0.10.0

  • General
    • The theta_fn arg to CreateVariable() has been removed.

0.9.1

  • General
    • Python 3.9 is now supported.
    • ops.beam_search_step now takes and returns an additional arg beam_done.
    • The namedtuple beam_search_helper.BeamSearchDecodeOutput now removes the field done_hyps.

0.9.0

  • General
    • Tensorflow 2.5 is now the required version.
    • Python 3.5 support has been removed.
    • py_utils.AddGlobalVN and py_utils.AddPerStepVN have been combined into py_utils.AddVN.
    • BaseSchedule().Value() no longer takes a step arg.
    • Classes deriving from BaseSchedule should implement Value() not FProp().
    • theta.global_step has been removed in favor of py_utils.GetGlobalStep().
    • py_utils.GenerateStepSeedPair() no longer takes a global_step arg.
    • PostTrainingStepUpdate() no longer takes a global_step arg.
    • The fatal_errors argument to custom input ops now takes error message substrings rather than integer error codes.
Older releases

0.8.2

  • General
    • NestedMap Flatten/Pack/Transform/Filter etc now expand descendent dicts as well.
    • Subclasses of BaseLayer extending from abc.ABCMeta should now extend base_layer.ABCLayerMeta instead.
    • Trying to call self.CreateChild outside of __init__ now raises an error.
    • base_layer.initializer has been removed. Subclasses no longer need to decorate their __init__ function.
    • Trying to call self.CreateVariable outside of __init__ or _CreateLayerVariables now raises an error.
    • It is no longer possible to access self.vars or self.theta inside of __init__. Refactor by moving the variable creation and access to _CreateLayerVariables. The variable scope is set automatically according to the layer name in _CreateLayerVariables.

Details for older releases are unavailable.

Quick start

Installation

There are two ways to set up Lingvo: installing a fixed version through pip, or cloning the repository and building it with bazel. Docker configurations are provided for each case.

If you would just like to use the framework as-is, it is easiest to just install it through pip. This makes it possible to develop and train custom models using a frozen version of the Lingvo framework. However, it is difficult to modify the framework code or implement new custom ops.

If you would like to develop the framework further and potentially contribute pull requests, you should avoid using pip and clone the repository instead.

pip:

The Lingvo pip package can be installed with pip3 install lingvo.

See the codelab for how to get started with the pip package.

From sources:

The prerequisites are:

  • a TensorFlow 2.6 installation,
  • a C++ compiler (only g++ 7.3 is officially supported), and
  • the bazel build system.

Refer to docker/dev.dockerfile for a set of working requirements.

git clone the repository, then use bazel to build and run targets directly. The python -m module commands in the codelab need to be mapped onto bazel run commands.

docker:

Docker configurations are available for both situations. Instructions can be found in the comments on the top of each file.

How to install docker.

Running the MNIST image model

Preparing the input data

pip:

mkdir -p /tmp/mnist
python3 -m lingvo.tools.keras2ckpt --dataset=mnist

bazel:

mkdir -p /tmp/mnist
bazel run -c opt //lingvo/tools:keras2ckpt -- --dataset=mnist

The following files will be created in /tmp/mnist:

  • mnist.data-00000-of-00001: 53MB.
  • mnist.index: 241 bytes.

Running the model

pip:

cd /tmp/mnist
curl -O https://raw.githubusercontent.com/tensorflow/lingvo/master/lingvo/tasks/image/params/mnist.py
python3 -m lingvo.trainer --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log

bazel:

(cpu) bazel build -c opt //lingvo:trainer
(gpu) bazel build -c opt --config=cuda //lingvo:trainer
bazel-bin/lingvo/trainer --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr

After about 20 seconds, the loss should drop below 0.3 and a checkpoint will be saved, like below. Kill the trainer with Ctrl+C.

trainer.py:518] step:   205, steps/sec: 11.64 ... loss:0.25747201 ...
checkpointer.py:115] Save checkpoint
checkpointer.py:117] Save checkpoint done: /tmp/mnist/log/train/ckpt-00000205

Some artifacts will be produced in /tmp/mnist/log/control:

  • params.txt: hyper-parameters.
  • model_analysis.txt: model sizes for each layer.
  • train.pbtxt: the training tf.GraphDef.
  • events.*: a tensorboard events file.

As well as in /tmp/mnist/log/train:

  • checkpoint: a text file containing information about the checkpoint files.
  • ckpt-*: the checkpoint files.

Now, let's evaluate the model on the "Test" dataset. In the normal training setup the trainer and evaler should be run at the same time as two separate processes.

pip:

python3 -m lingvo.trainer --job=evaler_test --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log

bazel:

bazel-bin/lingvo/trainer --job=evaler_test --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr

Kill the job with Ctrl+C when it starts waiting for a new checkpoint.

base_runner.py:177] No new check point is found: /tmp/mnist/log/train/ckpt-00000205

The evaluation accuracy can be found slightly earlier in the logs.

base_runner.py:111] eval_test: step:   205, acc5: 0.99775392, accuracy: 0.94150388, ..., loss: 0.20770954, ...

Running the machine translation model

To run a more elaborate model, you'll need a cluster with GPUs. Please refer to third_party/py/lingvo/tasks/mt/README.md for more information.

Running the GShard transformer based giant language model

To train a GShard language model with one trillion parameters on GCP using CloudTPUs v3-512 using 512-way model parallelism, please refer to third_party/py/lingvo/tasks/lm/README.md for more information.

Running the 3d object detection model

To run the StarNet model using CloudTPUs on GCP, please refer to third_party/py/lingvo/tasks/car/README.md.

Models

Automatic Speech Recognition

Car

Image

Language Modelling

Machine Translation

References

Please cite this paper when referencing Lingvo.

@misc{shen2019lingvo,
    title={Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling},
    author={Jonathan Shen and Patrick Nguyen and Yonghui Wu and Zhifeng Chen and others},
    year={2019},
    eprint={1902.08295},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

License

Apache License 2.0

PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Özlem Taşkın 0 Feb 23, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
wlad 2 Dec 19, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference

RawVSR This repo contains the official codes for our paper: Exploit Camera Raw Data for Video Super-Resolution via Hidden Markov Model Inference Xiaoh

Xiaohong Liu 23 Oct 08, 2022
Code for intrusion detection system (IDS) development using CNN models and transfer learning

Intrusion-Detection-System-Using-CNN-and-Transfer-Learning This is the code for the paper entitled "A Transfer Learning and Optimized CNN Based Intrus

Western OC2 Lab 38 Dec 12, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022