Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Related tags

Deep LearningUFLoss
Overview

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Official github repository for the paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss. In this work, a novel patch-based Unsupervised Feature loss (UFLoss) is proposed and incorporated into the training of DL-based reconstruction frameworks in order to preserve perceptual similarity and high-order statistics. In-vivo experiments indicate that adding the UFLoss encourages sharper edges with higher overall image quality under DL-based reconstruction framework. Our implementations are in PyTorch

Installation

To use this package, install the required python packages (tested with python 3.8 on Ubuntu 20.04 LTS):

pip install -r requirements.txt

Dataset

We used a subset of FastMRI knee dataset for the training and evaluation. We used E-SPIRiT to pre-compute sensitivity maps using BART. Post-processed data (including Sens Maps, Coil combined images) and pre-trained model can be requested by emailing [email protected].

Update We provide our data-preprocessing code at UFloss_training/data_preprocessing.py. This script computes the sensitivity maps and performs data normalization and coil combination. BART toolbox is required for computing the sensitivity maps. Follow the installation instructions on the website and add the following lines to your .bashrc file.

/python/" export PATH=" :$PATH"">
export PYTHONPATH="${PYTHONPATH}:
    
     /python/
     "
    
export PATH="
    
     :
     $PATH
     "
    

To run the data-preprocessing code, download and unzip the fastMRI Multi-coil knee dataset. Simplu run

python data_preprocessing.py -l <path to your fastMRI multi-coil dataset> -t <target directory> -c <size for your E-SPIRiT calibration region>

Step 0: Patch Extraction

To extract patches from the fully-smapled training data, go to the UFloss_training/ folder and run patch_extraction.py to extract patches. Please specify the directories of the training dataset and the target folder. Instructions are avaible by runing:

python patch_extraction.py -h

Step 1: Train the UFLoss feature mapping network

To train the UFLoss feature mapping network, go to the UFloss_training/ folder and run patch_learning.py. We provide a demo training script to perform the training on fully-sampled patches:

bash launch_training_patch_learning.sh

Visualiztion (Patch retrival results, shown below) script will be available soon.

Step 2: Train the DL-based reconstruction with UFLoss

To train the DL-based reconstruction with UFLoss, we provide our source code here at DL_Recon_UFLoss/. We adoped MoDL as our DL-based reconstruction network. We provide training scripts for MoDL with and without UFLoss at DL_Recon_UFLoss/models/unrolled2D/scripts:

bash launch_training_MoDL_traditional_UFLoss_256_demo.sh

You can easily paly around with the parameters by editing the training script. One representative reconstruction results is shown as below.

Perform inference with the trained model

To perform the inference reconstruction on the testing set, we provide an inference script at DL_Recon_UFLoss/models/unrolled2D/inference_ufloss.py. run the following command for inference:

python inference_ufloss.py --data-path <Path to the dataset> 
                        --device-num <Which device to train on>
                        --exp-dir <Path where the results should be saved>
                        --checkpoint <Path to an existing checkpoint>

Acknoledgements

Reconstruction code borrows heavily from fastMRI Github repo and DL-ESPIRiT by Christopher Sandino. This work is a colaboration between UC Berkeley and GE Healthcare. Please contact [email protected] if you have any questions.

Citation

If you find this code useful for your research, please consider citing our paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss:

@article{wang2021high,
  title={High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss},
  author={Wang, Ke and Tamir, Jonathan I and De Goyeneche, Alfredo and Wollner, Uri and Brada, Rafi and Yu, Stella and Lustig, Michael},
  journal={arXiv preprint arXiv:2108.12460},
  year={2021}
}
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
AAAI 2022 paper - Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction

AT-BMC Unifying Model Explainability and Robustness for Joint Text Classification and Rationale Extraction (AAAI 2022) Paper Prerequisites Install pac

16 Nov 26, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Official Pytorch Implementation of: "Semantic Diversity Learning for Zero-Shot Multi-label Classification"(2021) paper

Semantic Diversity Learning for Zero-Shot Multi-label Classification Paper Official PyTorch Implementation Avi Ben-Cohen, Nadav Zamir, Emanuel Ben Bar

28 Aug 29, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022