TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

Overview

SLM: Structural Language Models of Code

This is an official implementation of the model described in:

"Structural Language Models of Code" [PDF]

To appear in ICML'2020.

An online demo is available at https://AnyCodeGen.org.

This repository currently contains the dataset and the data extractor that we used to create the Java dataset in the paper. The TensorFlow code will be released soon.

Feel free to open a new issue for any question. We always respond quickly.

Table of Contents

Requirements

  • python3
  • TensorFlow 1.13 or newer (install). To check TensorFlow version:

python3 -c 'import tensorflow as tf; print(tf.__version__)'

Download our preprocessed Java-small dataset

This dataset contains ~1.3M examples (1.1GB).

mkdir data
cd data
wget https://codegen-slm.s3.us-east-2.amazonaws.com/data/java-small-preprocessed.tar.gz
tar -xvzf java-small-preprocessed.tar.gz

This will create a data/java-small/ sub-directory, containing the files that hold training, test and validation sets, a dict file for various dataset properties and histograms, and a grammar file that is used during beam search to distinguish between terminal and non-terminal nodes.

Creating and preprocessing a new Java dataset

To create and preprocess a new dataset (for example, to compare SLM to a new model on another dataset):

  • Edit the file preprocess.sh using the instructions there, pointing it to the correct training, validation and test directories.
  • Run the preprocess.sh file:

bash preprocess.sh

Datasets

Java

To download the Java-small as raw *.java files, use:

To download the preprocessed dataset, use:

To download the dataset in a tokenized format that can be used in seq2seq models (for example, with OpenNMT-py), use:

The following JSON files are the files that are created by the JavaExtractor. The preprocessed and the seq2seq files are created from these JSON files:

Every line is a JSON object that contains the following fields: num_targets, num_nodes, targets, is_token, target_child_id, internal_paths, relative_paths, head_paths, head_root_path, head_child_id, linearized_tree, filepath, left_context, right_context, target_seq, line.

C#

The C# dataset that we used in the paper was created using the raw (*.cs files) dataset of Allamanis et al., 2018, (https://aka.ms/iclr18-prog-graphs-dataset) and can be found here: https://aka.ms/iclr18-prog-graphs-dataset.

To extract examples from the C# files, we modified the data extraction code of Brockschmidt et al., 2019: https://github.com/microsoft/graph-based-code-modelling/.

Querying the Trained Model

To query the trained model, use the following API, where MYCODE is the given code snippet, that includes two question marks (??) to mark the "hole" that should be completed:

curl -X POST https://w0w3uc4a63.execute-api.us-east-1.amazonaws.com/prod/predict -d '{"code": "MYCODE"}'

For example:

curl -X POST https://w0w3uc4a63.execute-api.us-east-1.amazonaws.com/prod/predict -d '{"code": "public static Path[] stat2Paths(FileStatus[] stats) {  if (stats == null) return null;  Path[] ret = new Path[stats.length]; for (int i = 0; i < stats.length; ++i) { ret[i] = ??; } return ret; }"}'

Citation

Structural Language Models of Code

@article{alon2019structural,
  title={Structural Language Models of Code},
  author={Alon, Uri and Sadaka, Roy and Levy, Omer and Yahav, Eran},
  journal={arXiv preprint arXiv:1910.00577},
  year={2019}
}
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Arbitrary Distribution Modeling with Censorship in Real Time 59 2 60 3 Bidding Advertising for KDD'21

Arbitrary_Distribution_Modeling This repo implements the Neighborhood Likelihood Loss (NLL) and Arbitrary Distribution Modeling (ADM, with Interacting

7 Jan 03, 2023
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022