Backend for the Autocomplete platform. An AI assisted coding platform.

Overview

Introduction

A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit your needs. If migrating from Cortex, the custom predictor work exactly the same way as PythonPredictor does in Cortex. Most PythonPredictors can be converted to custom predictor by copy pasting the code and renaming some variables.

The custom predictor is packaged as a Docker container. It is recommended, but not required, to keep large model files outside of the container image itself and to load them from a storage volume. This example follows that pattern. You will need somewhere to publish your Docker image once built. This example leverages Docker Hub, where storing public images are free and private images are cheap. Google Container Registry and other registries can also be used.

Make sure you use a GPU enabled Docker image as a base, and that you enable GPU support when loading the model.

Getting Started

After installing kubectl and adding your CoreWeave Cloud access credentials, the following steps will deploy the Inference Service. Clone this repository and folder, and execute all commands in there. We'll be using all the files.

Sign up for a Docker Hub account, or use a different container registry if you already have one. The free plan works perfectly fine, but your container images will be accessible by anyone. This guide assumes a private registry, requiring authentication. Once signed up, create a new repository. For the rest of the guide, we'll assume that the name of the new repository is gpt-6b.

Build the Docker image

  1. Enter the custom-predictor directory. Build and push the Docker image. No modifications are needed to any of the files to follow along. The default Docker tag is latest. We strongly discourage you to use this, as containers are cached on the nodes and in other parts of the CoreWeave stack. Once you have pushed to a tag, do not push to that tag again. Below, we use simple versioning by using tag 1 for the first iteration of the image.
    export DOCKER_USER=thotailtd
    docker build -t $DOCKER_USER/gpt-6b:v1alpha1 .
    docker push $DOCKER_USER/gpt-6b:v1alpha1

Set up repository access

  1. Create a Secret with the Docker Hub credentials. The secret will be named docker-hub. This will be used by nodes to pull your private image. Refer to the Kubernetes Documentation for more details.

    kubectl create secret docker-registry docker-hub --docker-server=https://index.docker.io/v1/ --docker-username=<your-name> --docker-password=<your-pword> --docker-email=<your-email>
  2. Tell Kubernetes to use the newly created Secret by patching the ServiceAccount for your namespace to reference this Secret.

    kubectl patch serviceaccounts default --patch "$(cat image-secrets-serviceaccount.patch.yaml)"

Download the model

As we don't want to bundle the model in the Docker image for performance reasons, a storage volume needs to be set up and the pre-trained model downloaded to it. Storage volumes are allocated using a Kubernetes PersistentVolumeClaim. We'll also deploy a simple container that we can use to copy files to our newly created volume.

  1. Apply the PersistentVolumeClaim and the manifest for the sleep container.

    $ kubectl apply -f model-storage-pvc.yaml
    persistentvolumeclaim/model-storage created
    $ kubectl apply -f sleep-deployment.yaml
    deployment.apps/sleep created
  2. The volume is mounted to /models inside the sleep container. Download the pre-trained model locally, create a directory for it in the shared volume and upload it there. The name of the sleep Pod is assigned to a variable using kubectl. You can also get the name with kubectl get pods.

    The model will be loaded to Amazon S3 soon. Now I directly uploaded it to CoreWeave
    
    export SLEEP_POD=$(kubectl get pod -l "app.kubernetes.io/name=sleep" -o jsonpath='{.items[0].metadata.name}')
    kubectl exec -it $SLEEP_POD -- sh -c 'mkdir /models/sentiment'
    kubectl cp ./sleep_383500 $SLEEP_POD:/models/sentiment/
  3. (Optional) Instead of copying the model from the local filesystem, the model can be downloaded from Amazon S3. The Amazon CLI utilities already exist in the sleep container.

    $ export SLEEP_POD=$(kubectl get pod -l "app.kubernetes.io/name=sleep" -o jsonpath='{.items[0].metadata.name}')
    $ kubectl exec -it $SLEEP_POD -- sh
    $# aws configure
    $# mkdir /models/sentiment
    $# aws s3 sync --recursive s3://thot-ai-models /models/sentiment/

Deploy the model

  1. Modify sentiment-inferenceservice.yaml to reference your docker image.

  2. Apply the resources. This can be used to both create and update existing manifests.

     $ kubectl apply -f sentiment-inferenceservice.yaml
     inferenceservice.serving.kubeflow.org/sentiment configured
  3. List pods to see that the Predictor has launched successfully. This can take a minute, wait for Ready to indicate 2/2.

    $ kubectl get pods
    NAME                                                           READY   STATUS    RESTARTS   AGE
    sentiment-predictor-default-px8xk-deployment-85bb6787d7-h42xk  2/2     Running   0          34s

    If the predictor fails to init, look in the logs for clues kubectl logs sentiment-predictor-default-px8xk-deployment-85bb6787d7-h42xk kfserving-container.

  4. Once all the Pods are running, we can get the API endpoint for our model. The API endpoints follow the Tensorflow V1 HTTP API.

    $ kubectl get inferenceservices
    NAME        URL                                                                          READY   DEFAULT TRAFFIC   CANARY TRAFFIC   AGE
    sentiment   http://sentiment.tenant-test.knative.chi.coreweave.com/v1/models/sentiment   True    100                                23h

    The URL in the output is the public API URL for your newly deployed model. A HTTPs endpoint is also available, however this one bypasses any canary deployments. Retrieve this one with kubectl get ksvc.

  5. Run a test prediction on the URL from above. Remember to add the :predict postfix.

     $ curl -d @sample.json http://sentiment.tenant-test.knative.chi.coreweave.com/v1/models/sentiment:predict
    {"predictions": ["positive"]}
  6. Remove the InferenceService. This will delete all the associated resources, except for your model storage and sleep Deployment.

    $ kubectl delete inferenceservices sentiment
    inferenceservice.serving.kubeflow.org "sentiment" deleted
    ```# thot.ai-Back-End
Owner
Tatenda Christopher Chinyamakobvu
Tatenda Christopher Chinyamakobvu
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
LewusBot - Twitch ChatBot built in python with twitchio library

LewusBot Twitch ChatBot built in python with twitchio library. Uses twitch/leagu

Lewus 25 Dec 04, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
The Classical Language Toolkit

Notice: This Git branch (dev) contains the CLTK's upcoming major release (v. 1.0.0). See https://github.com/cltk/cltk/tree/master and https://docs.clt

Classical Language Toolkit 754 Jan 09, 2023
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch

COCO LM Pretraining (wip) Implementation of COCO-LM, Correcting and Contrasting Text Sequences for Language Model Pretraining, in Pytorch. They were a

Phil Wang 44 Jul 28, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
[ICCV 2021] Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 86 Dec 28, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Text vectorization tool to outperform TFIDF for classification tasks

WHAT: Supervised text vectorization tool Textvec is a text vectorization tool, with the aim to implement all the "classic" text vectorization NLP meth

186 Dec 29, 2022
Generating new names based on trends in data using GPT2 (Transformer network)

MLOpsNameGenerator Overall Goal The goal of the project is to develop a model that is capable of creating Pokémon names based on its description, usin

Gustav Lang Moesmand 2 Jan 10, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Quickly train T5 models in just 3 lines of code + ONNX support simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quic

Shivanand Roy 220 Dec 30, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables

Mortgage-Application-Analysis Create a machine learning model which will predict if the mortgage will be approved or not based on 5 variables: age, in

1 Jan 29, 2022