DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

Overview

DirectVoxGO

DirectVoxGO (Direct Voxel Grid Optimization, see our paper) reconstructs a scene representation from a set of calibrated images capturing the scene.

  • NeRF-comparable quality for synthesizing novel views from our scene representation.
  • Super-fast convergence: Our 15 mins/scene vs. NeRF's 10~20+ hrs/scene.
  • No cross-scene pre-training required: We optimize each scene from scratch.
  • Better rendering speed: Our <1 secs vs. NeRF's 29 secs to synthesize a 800x800 images.

Below run-times (mm:ss) of our optimization progress are measured on a machine with a single RTX 2080 Ti GPU.

github_teaser.mp4

Update

  • 2021.11.23: Support CO3D dataset.
  • 2021.11.23: Initial release. Issue page is disabled for now. Feel free to contact [email protected] if you have any questions.

Installation

git clone [email protected]:sunset1995/DirectVoxGO.git
cd DirectVoxGO
pip install -r requirements.txt

Pytorch installation is machine dependent, please install the correct version for your machine. The tested version is pytorch 1.8.1 with python 3.7.4.

Dependencies (click to expand)
  • PyTorch, numpy: main computation.
  • scipy, lpips: SSIM and LPIPS evaluation.
  • tqdm: progress bar.
  • mmcv: config system.
  • opencv-python: image processing.
  • imageio, imageio-ffmpeg: images and videos I/O.

Download: datasets, trained models, and rendered test views

Directory structure for the datasets (click to expand; only list used files)
data
├── nerf_synthetic     # Link: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
│   └── [chair|drums|ficus|hotdog|lego|materials|mic|ship]
│       ├── [train|val|test]
│       │   └── r_*.png
│       └── transforms_[train|val|test].json
│
├── Synthetic_NSVF     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NSVF.zip
│   └── [Bike|Lifestyle|Palace|Robot|Spaceship|Steamtrain|Toad|Wineholder]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0_train|1_val|2_test]_*.png
│       └── pose
│           └── [0_train|1_val|2_test]_*.txt
│
├── BlendedMVS         # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/BlendedMVS.zip
│   └── [Character|Fountain|Jade|Statues]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── TanksAndTemple     # Link: https://dl.fbaipublicfiles.com/nsvf/dataset/TanksAndTemple.zip
│   └── [Barn|Caterpillar|Family|Ignatius|Truck]
│       ├── intrinsics.txt
│       ├── rgb
│       │   └── [0|1|2]_*.png
│       └── pose
│           └── [0|1|2]_*.txt
│
├── deepvoxels     # Link: https://drive.google.com/drive/folders/1ScsRlnzy9Bd_n-xw83SP-0t548v63mPH
│   └── [train|validation|test]
│       └── [armchair|cube|greek|vase]
│           ├── intrinsics.txt
│           ├── rgb/*.png
│           └── pose/*.txt
│
└── co3d               # Link: https://github.com/facebookresearch/co3d
    └── [donut|teddybear|umbrella|...]
        ├── frame_annotations.jgz
        ├── set_lists.json
        └── [129_14950_29917|189_20376_35616|...]
            ├── images
            │   └── frame*.jpg
            └── masks
                └── frame*.png

Synthetic-NeRF, Synthetic-NSVF, BlendedMVS, Tanks&Temples, DeepVoxels datasets

We use the datasets organized by NeRF, NSVF, and DeepVoxels. Download links:

Download all our trained models and rendered test views at this link to our logs.

CO3D dataset

We also support the recent Common Objects In 3D dataset. Our method only performs per-scene reconstruction and no cross-scene generalization.

GO

Train

To train lego scene and evaluate testset PSNR at the end of training, run:

$ python run.py --config configs/nerf/lego.py --render_test

Use --i_print and --i_weights to change the log interval.

Evaluation

To only evaluate the testset PSNR, SSIM, and LPIPS of the trained lego without re-training, run:

$ python run.py --config configs/nerf/lego.py --render_only --render_test \
                                              --eval_ssim --eval_lpips_vgg

Use --eval_lpips_alex to evaluate LPIPS with pre-trained Alex net instead of VGG net.

Reproduction

All config files to reproduce our results:

$ ls configs/*
configs/blendedmvs:
Character.py  Fountain.py  Jade.py  Statues.py

configs/nerf:
chair.py  drums.py  ficus.py  hotdog.py  lego.py  materials.py  mic.py  ship.py

configs/nsvf:
Bike.py  Lifestyle.py  Palace.py  Robot.py  Spaceship.py  Steamtrain.py  Toad.py  Wineholder.py

configs/tankstemple:
Barn.py  Caterpillar.py  Family.py  Ignatius.py  Truck.py

configs/deepvoxels:
armchair.py  cube.py  greek.py  vase.py

Your own config files

Check the comments in configs/default.py for the configuable settings. The default values reproduce our main setup reported in our paper. We use mmcv's config system. To create a new config, please inherit configs/default.py first and then update the fields you want. Below is an example from configs/blendedmvs/Character.py:

_base_ = '../default.py'

expname = 'dvgo_Character'
basedir = './logs/blended_mvs'

data = dict(
    datadir='./data/BlendedMVS/Character/',
    dataset_type='blendedmvs',
    inverse_y=True,
    white_bkgd=True,
)

Development and tuning guide

Extention to new dataset

Adjusting the data related config fields to fit your camera coordinate system is recommend before implementing a new one. We provide two visualization tools for debugging.

  1. Inspect the camera and the allocated BBox.
    • Export via --export_bbox_and_cams_only {filename}.npz:
      python run.py --config configs/nerf/mic.py --export_bbox_and_cams_only cam_mic.npz
    • Visualize the result:
      python tools/vis_train.py cam_mic.npz
  2. Inspect the learned geometry after coarse optimization.
    • Export via --export_coarse_only {filename}.npz (assumed coarse_last.tar available in the train log):
      python run.py --config configs/nerf/mic.py --export_coarse_only coarse_mic.npz
    • Visualize the result:
      python tools/vis_volume.py coarse_mic.npz 0.001 --cam cam_mic.npz
Inspecting the cameras & BBox Inspecting the learned coarse volume

Speed and quality tradeoff

We have reported some ablation experiments in our paper supplementary material. Setting N_iters, N_rand, num_voxels, rgbnet_depth, rgbnet_width to larger values or setting stepsize to smaller values typically leads to better quality but need more computation. Only stepsize is tunable in testing phase, while all the other fields should remain the same as training.

Acknowledgement

The code base is origined from an awesome nerf-pytorch implementation, but it becomes very different from the code base now.

Owner
sunset
A Ph.D. candidate working on computer vision tasks. Recently focusing on 3D modeling.
sunset
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Official Implementation of Swapping Autoencoder for Deep Image Manipulation (NeurIPS 2020)

Swapping Autoencoder for Deep Image Manipulation Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, Richard Zhang UC

449 Dec 27, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022