B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

Related tags

Deep LearningBBEA
Overview

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

This is the offical implementation of the aforementioned paper. Graphical Abstract


Abstract

The early pioneering Neural Architecture Search (NAS) works were multi-trial methods applicable to any general search space. The subsequent works took advantage of the early findings and developed weight-sharing methods that assume a structured search space typically with pre-fixed hyperparameters. Despite the amazing computational efficiency of the weight-sharing NAS algorithms, it is becoming apparent that multi-trial NAS algorithms are also needed for identifying very high-performance architectures, especially when exploring a general search space. In this work, we carefully review the latest multi-trial NAS algorithms and identify the key strategies including Evolutionary Algorithm (EA), Bayesian Optimization (BO), diversification, input and output transformations, and lower fidelity estimation. To accommodate the key strategies into a single framework, we develop B2EA that is a surrogate assisted EA with two BO surrogate models and a mutation step in between. To show that B2EA is robust and efficient, we evaluate three performance metrics over 14 benchmarks with general and cell-based search spaces. Comparisons with state-of-the-art multi-trial algorithms reveal that B2EA is robust and efficient over the 14 benchmarks for three difficulty levels of target performance.

Citation

To be updated soon


Requirements

Prerequisite

This project is developed and tested on Linux OS. If you want to run on Windows, we strongly suggest using Linux Subsystem for Windows. To avoid conflicting dependencies, we recommend to create a new virtual enviornment. For this reason, installing Anaconda suitable to the OS system is pre-required to create the virtual environment.

Package Installation

The following is creating an environment and also installing requried packages automatically using conda.

(base) device:path/BBEA$ conda create -n bbea python=3.6
(base) device:path/BBEA$ conda activate bbea
(bbea) device:path/BBEA$ sh install.sh

Tabular Dataset Installation

Pre-evaluated datasets enable to benchmark Hyper-Parameter Optimization(HPO) algorithm performance without hugh computational costs of DNN training.

HPO Benchmark

  • To run algorithms on the HPO-bench dataset, download the database files as follows:
(bbea) device:path/BBEA$ cd lookup
(bbea) device:path/BBEA/lookup$ wget http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz
(bbea) device:path/BBEA/lookup$ tar xf fcnet_tabular_benchmarks.tar.gz

Note that *.hdf5 files should be located under /lookup/fcnet_tabular_benchmarks.

Two NAS Benchmarks

  • To run algorithms on the the NAS-bench-101 dataset,
    • download the tfrecord file and save it into /lookup.
    • NAS-bench-101 API requires to install the CPU version of TensorFlow 1.12.
(bbea)device:path/BBEA/lookup$ wget https://storage.googleapis.com/nasbench/nasbench_full.tfrecord

  • To run algorithms on the NAS-bench-201,
    • download NAS-Bench-201-v1_1-096897.pth file in the /lookup according to this doc.
    • NAS-bench-201 API requires to install pytorch CPU version. Refer to pytorch installation guide.
(bbea)device:path/BBEA$ conda install pytorch torchvision cpuonly -c pytorch

DNN Benchmark

  • To run algorithms on the DNN benchmark, download the zip file from the link.
    • Vaildate the file contains CSV files and JSON files in /lookup and /hp_conf, respectively.
    • Unzip the downloaded file and copy two directories into this project. Note the folders already exists in this project.

HPO Run

To run the B2EA algorithms

The experiment using the proposed method of the paper can be performed using the following runner:

  • bbea_runner.py
    • This runner can conduct the experiment that the input arguments have configured.
    • Specifically, the hyperparameter space configuration and the maximum runtime are two mandatory arguments. In the default setting, the names of the search spaces configurations denote the names of JSON configuration files in /hp_conf. The runtime, on the other hand, can be set using seconds. For convenience, 'm', 'h', 'd' can be postfixed to denote minutes, hours, and days.
    • Further detailed options such that the algorithm hyperparameters' setting and the run configuration such as repeated runs are optional.
    • Refer to the help (-h) option as the command line argument.
usage: bbea_runner.py [-h] [-dm] [-bm BENCHMARK_MODE] [-nt NUM_TRIALS]
                      [-etr EARLY_TERM_RULE] [-hd HP_CONFIG_DIR]
                      hp_config exp_time

positional arguments:
  hp_config             Hyperparameter space configuration file name.
  exp_time              The maximum runtime when an HPO run expires.

optional arguments:
  -h, --help            show this help message and exit
  -dm, --debug_mode     Set debugging mode.
  -nt NUM_TRIALS, --num_trials NUM_TRIALS
                        The total number of repeated runs. The default setting
                        is "1".
  -etr EARLY_TERM_RULE, --early_term_rule EARLY_TERM_RULE
                        Early termination rule. A name of compound rule, such
                        as "PentaTercet" or "DecaTercet", can be used. The
                        default setting is DecaTercet.
  -hd HP_CONFIG_DIR, --hp_config_dir HP_CONFIG_DIR
                        Hyperparameter space configuration directory. The
                        default setting is "./hp_conf/"


Results

Experimental results will be saved as JSON files under the /results directory. While the JSON file is human-readable and easily interpretable, we further provide utility functions in the python scripts of the above directory, which can analyze the results and plot the figures shown in the paper.

Owner
SNU ADSL
Applied Data Science Lab., Seoul National University
SNU ADSL
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022