[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

Overview

mmTransformer

Introduction

  • This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented in the commercial project, we provide inference code of model with six trajectory propopals for your reference.

  • For other information, please refer to our paper Multimodal Motion Prediction with Stacked Transformers. (CVPR 2021) [Paper] [Webpage]

img

Set up your virtual environment

  • Initialize virtual environment:

    conda create -n mmTrans python=3.7
    
  • Install agoverse api. Please refer to this page.

  • Install the pytorch. The latest codes are tested on Ubuntu 16.04, CUDA11.1, PyTorch 1.8 and Python 3.7: (Note that we require the version of torch >= 1.5.0 for testing with pretrained model)

    pip install torch==1.8.0+cu111\
          torchvision==0.9.0+cu111\
          torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
    
  • For other requirement, please install with following command:

    pip install -r requirement.txt
    

Preparation

Download the code, model and data

  1. Clone this repo from the GitHub.

     git clone https://github.com/decisionforce/mmTransformer.git
    
  2. Download the pretrained model and data [here] (map.pkl for Python 3.7 is available [here]) and save it to ./models and ./interm_data.

     cd mmTransformer
     mkdir models
     mkdir interm_data
    
  3. Finally, your directory structure should look something like this:

     mmTransformer
     └── models
         └── demo.pt
     └── interm_data
         └── argoverse_info_val.pkl
         └── map.pkl
    

Preprocess the dataset

Alternatively, you can process the data from scratch using following commands.

  1. Download Argoverse dataset and create a symbolic link to ./data folder or use following commands.

     cd path/to/mmtransformer/root
     mkdir data
     cd data
     wget https://s3.amazonaws.com/argoai-argoverse/forecasting_val_v1.1.tar.gz 
     tar -zxvf  forecasting_val_v1.1.tar.gz
    
  2. Then extract the agent and map information from raw data via Argoverse API:

     python -m lib.dataset.argoverse_convertor ./config/demo.py
    
  3. Finally, your directory structure should look something like above illustrated.

Format of processed data in ‘argoverse_info_val.pkl’:

img

Format of map information in ‘map.pkl’:

img

Run the mmTransformer

For testing:

python Evaluation.py ./config/demo.py --model-name demo

Results

Here we showcase the expected results on validation set:

Model Expected results Results in paper
minADE 0.709 0.713
minFDE 1.081 1.153
MR (K=6) 10.2 10.6

TODO

  • We are going to open source our visualization tools and a demo result. (TBD)

Contact us

If you have any issues with the code, please contact to this email: [email protected]

Citation

If you find our work useful for your research, please consider citing the paper

@article{liu2021multimodal,
  title={Multimodal Motion Prediction with Stacked Transformers},
  author={Liu, Yicheng and Zhang, Jinghuai and Fang, Liangji and Jiang, Qinhong and Zhou, Bolei},
  journal={Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
DeciForce: Crossroads of Machine Perception and Autonomy
Research on Unifying Machine Perception and Autonomy in Zhou Group
DeciForce: Crossroads of Machine Perception and Autonomy
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Network Compression via Central Filter

Network Compression via Central Filter Environments The code has been tested in the following environments: Python 3.8 PyTorch 1.8.1 cuda 10.2 torchsu

2 May 12, 2022
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022