Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

Related tags

Deep LearningDU-VAE
Overview

DU-VAE

This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

Acknowledgements

Our code is mainly based on this public code. Very thanks for its authors.

Requirements

  • Python >= 3.6
  • Pytorch >= 1.5.0

Data

Datastes used in this paper can be downloaded in this link, with the specific license if that is not based on MIT License.

Usage

Example script to train DU-VAE on text data:

python text.py --dataset yelp \
 --device cuda:0  \
--gamma 0.5 \
--p_drop 0.2 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10

Example script to train DU-VAE on image data:

python3.6 image.py --dataset omniglot \
 --device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5  \
--p_drop 0.1 \
--delta_rate 1 \
--dataset omniglot

Example script to train DU-IAF, a variant of DU-VAE, on text data:

python3.6 text_IAF.py --device cuda:2 \
--dataset yelp \
--gamma 0.6 \
--p_drop 0.3 \
--delta_rate 1 \
--kl_start 0 \
--warm_up 10 \
--flow_depth 2 \
--flow_width 60

Example script to train DU-IAF on image data:

python3.6 image_IAF.py --dataset omniglot\
  --device cuda:3 \
--kl_start 0 \
--warm_up 10 \
--gamma 0.5 \
 --p_drop 0.15\
 --delta_rate 1 \
--flow_depth 2\
--flow_width 60 

Here,

  • --dataset specifies the dataset name, currently it supports synthetic, yahoo, yelp for text.py and omniglot for image.py.
  • --kl_start represents starting KL weight (set to 1.0 to disable KL annealing)
  • --warm_up represents number of annealing epochs (KL weight increases from kl_start to 1.0 linearly in the first warm_up epochs)
  • --gamma represents the parameter $\gamma$ in our Batch-Normalization approach, which should be more than 0 to use our model.
  • --p_drop represents the parameter $1-p$ in our Dropout approach, which denotes the percent of data to be ignored and should be ranged in (0,1).
  • --delta_rate represents the hyper-parameter $\alpha$ to controls the min value of the variance $\delta^2$
  • --flow_depth represents number of MADE layers used to implement DU-IAF.
  • --flow_wdith controls the hideen size in each IAF block, where we set the product between the value and the dimension of $z$ as the hidden size. For example, when we set --flow width 60 with the dimension of $z$ as 32, the hidden size of each IAF block is 1920.

Reference

If you find our methods or code helpful, please kindly cite the paper:

@inproceedings{shen2021regularizing,
  title={Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness},
  author={Shen, Dazhong  and Qin, Chuan and Wang, Chao and Zhu, Hengshu and Chen, Enhong and Xiong, Hui},
  booktitle={Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI-21)},
  year={2021}
}
Owner
Dazhong Shen
Dazhong Shen
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Realtime YOLO Monster Detection With Non Maximum Supression

Realtime-YOLO-Monster-Detection-With-Non-Maximum-Supression Table of Contents In

5 Oct 07, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022