Air Pollution Prediction System using Linear Regression and ANN

Overview

AirPollution

Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living

Publication Link: Pandya, S.; Ghayvat, H.; Sur, A.; Awais, M.; Kotecha, K.; Saxena, S.; Jassal, N.; Pingale, G. Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living. Sensors 2020, 20, 5448, Impact Factor: 3.5, H-Index: 172, Q1. https://doi.org/10.3390/s20185448

Abstract Air pollution has been a looming issue of the 21st century that has also significantly impacted the surrounding environment and societal health. Recently, previous studies have conducted extensive research on air pollution and air quality monitoring. Despite this, the fields of air pollution and air quality monitoring remain plagued with unsolved problems. In this study, the Pollution Weather Prediction System (PWP) is proposed to perform air pollution prediction for outdoor sites for various pollution parameters. In the presented research work, we introduced a PWP system configured with pollution-sensing units, such as SDS021, MQ07-CO, NO2-B43F, and Aeroqual Ozone (O3). These sensing units were utilized to collect and measure various pollutant levels, such as PM2.5, PM10, CO, NO2, and O3, for 90 days at Symbiosis International University, Pune, Maharashtra, India. The data collection was carried out between the duration of December 2019 to February 2020 during the winter. The investigation results validate the success of the presented PWP system. In the conducted experiments, linear regression and artificial neural network (ANN)-based AQI (air quality index) predictions were performed. Furthermore, the presented study also found that the customized linear regression methodology outperformed other machine-learning methods, such as linear, ridge, Lasso, Bayes, Huber, Lars, Lasso-lars, stochastic gradient descent (SGD), and ElasticNet regression methodologies, and the customized ANN regression methodology used in the conducted experiments. The overall AQI values of the air pollutants were calculated based on the summation of the AQI values of all the presented air pollutants. In the end, the web and mobile interfaces were developed to display air pollution prediction values of a variety of air pollutants.

Keywords: healthy living; variability analysis; pollution prediction; linear regression; artificial neural network; smart outdoor monitoring

Owner
Dr Sharnil Pandya, Associate Professor, Symbiosis International University
Dr Sharnil Pandya has worked on research funding projects of approved by DRDO and DST and has also received the "Young Scientist Award" in 2021.
Dr Sharnil Pandya, Associate Professor, Symbiosis International University
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022