Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Overview

Myo Keylogging

This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Gazzari, Annemarie Mattmann, Max Maass and Matthias Hollick in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Volume 5, Issue 4, 2021.

We include the software used for recording the dataset (record folder) and the software for training and running the neural networks (ml folder) as well as analyzing the results (analysis folder). The scripts folder provides some helper scripts for automating batches of hyperparameter optimization, model fitting, analyses and more. The results folder includes a pickled version of the predictions of our models, on which analyses can be run, e.g. to reproduce the paper results.

Installation

To install the project, first clone the repository and change directory into the fresh clone:

git clone https://github.com/seemoo-lab/myo-keylogging.git
cd myo-keylogging

You can use a python virtual environment (or any other virtual environment of your choice):

mkvirtualenv myo --system-site-packages
workon myo

To make sure you have the newest software versions you can run an upgrade:

pip install --upgrade pip setuptools

To install the requirements run:

pip install -r requirements.txt

Finally, import the training and test data into the project. The top level folder should include a folder train-data with all the records for training the models and a folder test-data with all the records for testing the models.

wget https://zenodo.org/record/5594651/files/myo-keylogging-dataset.zip
unzip myo-keylogging-dataset.zip

Using the record library, you can add you can extend this dataset.

Rerun of Results

To reproduce our results from the provided predictions of our models, go to the top level directory and run:

./scripts/create_results.sh

This will recreate all performance value files and plots in the subfolders of the results folder as used in the paper.

Run the following to list the fastest and slowest typists in order to determine their class imbalance in the results/train-data-skew.csv and the results/test-data-skew.csv files:

python -m analysis exp_key_data

To recreate the provided predictions and class skew files, execute the following from the top level directory:

./scripts/create_models.sh
./scripts/create_predictions.sh
./scripts/create_class_skew_files.sh

This will fit the models with the current choice of hyperparameters and run each model on the test dataset to create the required predictions for analysis. Additionally, the class skew files will be recreated.

To run the hyperparameter optimization either run the run_shallow_hpo.sh script or, alternatively, the slurm_run_shallow_hpo.sh script when on a SLURM cluster.

sbatch scripts/slurm_run_shallow_hpo.sh
./scripts/run_shallow_hpo.sh

Afterwards you can use the merge_shallow_hpo_runs.py script to combine the results for easier evaluation of the hyperparameters.

Fit Models

In order to fit and analyze your own models, go to the top level directory and run any of:

python -m ml crnn
python -m ml resnet
python -m ml resnet11
python -m ml wavenet

This will fit the respective model with the default parameters and in binary mode for keystroke detection. In order to fit multiclass models for keystroke identification, use the encoding parameter, e.g.:

python -m ml crnn --encoding "multiclass"

In order to test specific sensors, ignore the others (note that quaternions are ignored by default), e.g. to use only EMG on a CRNN model, use:

python -m ml crnn --ignore "quat" "acc" "gyro"

To run a hyperparameter optimization, run e.g.:

python -m ml crnn --func shallow_hpo --step 5

To gain more information on possible parameters, run e.g.:

python -m ml crnn --help

Some parameters for the neural networks are fixed in the code.

Analyze Models

In order to analyze your models, run apply_models to create the predictions as pickled files. On these you can run further analyses found in the analysis folder.

To run apply_models on a binary model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding binary --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To run a multiclass model, do:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding multiclass --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS>

To chain a binary and multiclass model, do e.g.:

python -m analysis apply_models --model_path results/<PATH_TO_MODEL> --encoding chain --data_path test-data/ --save_path results/<PATH_TO_PKL> --save_only --basenames <YOUR MODELS> --tolerance 10

Further parameters interesting for analyses may be a filter on the users with the parameter (--users known or --users unknown) or on the data (--data known or --data unknown) to include only users (not) in the training data or include only data typed by all or no other user respectively.

For more information, run:

python -m analysis apply_models --help

To later recreate model performance results and plots, run:

python -m analysis apply_models --encoding <ENCODING> --load_results results/<PATH_TO_PKL> --save_path results/<PATH_TO_PKL> --save_only

with the appropriate encoding of the model used to create the pickled results.

To run further analyses on the generated predictions, create or choose your analysis from the analysis folder and run:

python -m analysis <ANALYSIS_NAME>

Refer to the help for further information:

python -m analysis <ANALYSIS_NAME> --help

Record Data

In order to record your own data(set), switch to the record folder. To record sensor data with our recording software, you will need one to two Myo armbands connected to your computer. Then, you can start a training data recording, e.g.:

python tasks.py -s 42 -l german record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_DE

for a German recording with seed 42, a touch typist and a TADA68 German physical keyboard layout or

python tasks.py -s 42 -l english record touch_typing --left_tty <TTY_LEFT_MYO> --left_mac <MAC_LEFT_MYO> --right_tty <TTY_RIGHT_MYO> --right_mac <MAC_RIGHT_MYO> --kb_model TADA68_US

for an English recording with seed 42, a hybrid typist and a TADA68 English physical keyboard layout.

In order to start a test data recording, simply run the passwords.py instead of the tasks.py.

After recording training data, please execute the following script to complete the meta data:

python update_text_meta.py -p ../train-data/

After recording test data, please execute the following two scripts to complete the meta data:

python update_pw_meta.py -p ../test-data/
python update_cuts.py -p ../test-data/

For further information, check:

python tasks.py --help
python passwords.py --help

Note that the recording software includes text extracts as outlined in the acknowledgments below.

Links

Acknowledgments

This work includes the following external materials to be found in the record folder:

  1. Various texts from Wikipedia available under the CC-BY-SA 3.0 license.
  2. The EFF's New Wordlists for Random Passphrases available under the CC-BY 3.0 license.
  3. An extract of the Top 1000 most common passwords by Daniel Miessler, Jason Haddix, and g0tmi1k available under the MIT license.

License

This software is licensed under the GPLv3 license, please also refer to the LICENSE file.

Owner
Secure Mobile Networking Lab
Secure Mobile Networking Lab
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Code for models used in Bashiri et al., "A Flow-based latent state generative model of neural population responses to natural images".

A Flow-based latent state generative model of neural population responses to natural images Code for "A Flow-based latent state generative model of ne

Sinz Lab 5 Aug 26, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022