Decorators for maximizing memory utilization with PyTorch & CUDA

Overview

torch-max-mem

Tests Cookiecutter template from @cthoyt PyPI PyPI - Python Version PyPI - License Documentation Status Code style: black

This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and applying successive halving until no more out-of-memory exception occurs.

💪 Getting Started

Assume you have a function for batched computation of nearest neighbors using brute-force distance calculation.

import torch

def knn(x, y, batch_size, k: int = 3):
    return torch.cat(
        [
            torch.cdist(x[start : start + batch_size], y).topk(k=k, dim=1, largest=False).indices
            for start in range(0, x.shape[0], batch_size)
        ],
        dim=0,
    )

With torch_max_mem you can decorate this function to reduce the batch size until no more out-of-memory error occurs.

import torch
from torch_max_mem import maximize_memory_utilization


@maximize_memory_utilization(parameter_name="batch_size")
def knn(x, y, batch_size, k: int = 3):
    return torch.cat(
        [
            torch.cdist(x[start : start + batch_size], y).topk(k=k, dim=0, largest=False).indices
            for start in range(0, x.shape[0], batch_size)
        ],
        dim=0,
    )

In the code, you can now always pass the largest sensible batch size, e.g.,

x = torch.rand(100, 100, device="cuda")
y = torch.rand(200, 100, device="cuda")
knn(x, y, batch_size=x.shape[0])

🚀 Installation

The most recent release can be installed from PyPI with:

$ pip install torch_max_mem

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/mberr/torch-max-mem.git

To install in development mode, use the following:

$ git clone git+https://github.com/mberr/torch-max-mem.git
$ cd torch-max-mem
$ pip install -e .

👐 Contributing

Contributions, whether filing an issue, making a pull request, or forking, are appreciated. See CONTRIBUTING.md for more information on getting involved.

👋 Attribution

Parts of the logic have been developed with Laurent Vermue for PyKEEN.

⚖️ License

The code in this package is licensed under the MIT License.

🍪 Cookiecutter

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

🛠️ For Developers

See developer instrutions

The final section of the README is for if you want to get involved by making a code contribution.

🥼 Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

📖 Building the Documentation

$ tox -e docs

📦 Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses Bump2Version to switch the version number in the setup.cfg and src/torch_max_mem/version.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.
You might also like...
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We have upgraded the point cloud modules of SPH3D-GCN from homogeneous to heterogeneous representations, and included the upgraded modules into this latest work as well. We are happy to announce that the work is accepted to IEEE CVPR2021.

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

Comments
  • Import error

    Import error

    When trying to run the example from the README, I currently get the following error

    Traceback (most recent call last):
      File ".../torch_max_mem/tmp.py", line 2, in <module>
        from torch_max_mem import maximize_memory_utilization
    ModuleNotFoundError: No module named 'torch_max_mem'
    

    When I check pip list, the package name appears to be the stylized name

    $ pip list | grep max
    torch-max-mem     0.0.1.dev0 .../torch_max_mem/src
    
    opened by mberr 2
  • Add simplified key hasher

    Add simplified key hasher

    This PR adds a simplification for creating hashers based on the values associated to a subse of keys without having to define a lambda or named function.

    opened by mberr 1
  • Code fails for KEYWORD_ONLY params

    Code fails for KEYWORD_ONLY params

    The following snippet

    from torch_max_mem import maximize_memory_utilization
    
    
    @maximize_memory_utilization()
    def func(a, *bs, batch_size: int):
        pass
    

    raises an error

    Traceback (most recent call last):
      File ".../tmp.py", line 5, in <module>
        def func(a, *bs, batch_size: int):
      File ".../venv/venv-cpu/lib/python3.8/site-packages/torch_max_mem/api.py", line 274, in __call__
        wrapped = maximize_memory_utilization_decorator(
      File ".../venv/venv-cpu/lib/python3.8/site-packages/torch_max_mem/api.py", line 150, in decorator_maximize_memory_utilization
        raise ValueError(f"{parameter_name} must be a keyword based parameter, but is {_parameter.kind}.")
    ValueError: batch_size must be a keyword based parameter, but is KEYWORD_ONLY.
    

    since _parameter.kind is KEYWORD_ONLY.

    This is overly restrictive, since we only need keyword-based parameters.

    opened by mberr 0
  • stateful decorator

    stateful decorator

    Add a decorator which remembers to maximum parameter value for next time. Since this is handled internally, we do not need to expose the found parameter value to the outside, leaving the method signature unchanged.

    opened by mberr 0
Releases(v0.0.4)
  • v0.0.4(Aug 18, 2022)

    What's Changed

    • Fix ad hoc key hashing by @mberr in https://github.com/mberr/torch-max-mem/pull/7
    • Fix default value handling by @mberr in https://github.com/mberr/torch-max-mem/pull/8

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.3...v0.0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Aug 18, 2022)

    What's Changed

    • Fix keyword only params by @mberr in https://github.com/mberr/torch-max-mem/pull/6

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.2...v0.0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(May 6, 2022)

    What's Changed

    • Add simplified key hasher by @mberr in https://github.com/mberr/torch-max-mem/pull/3
    • Update README & doc by @mberr in https://github.com/mberr/torch-max-mem/pull/4

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.1...v0.0.2

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Feb 1, 2022)

TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

MagInkCal This repo contains the code needed to drive an E-Ink Magic Calendar that uses a battery powered (PiSugar2) Raspberry Pi Zero WH to retrieve

2.8k Dec 28, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023