A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

Overview

What

Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun 23, 2019)

Why

  • OpenCV's DNN module, as of today, does not support NVIDIA GPUs. There is a GSOC WIP that will change this. Till then, this library is what I needed.

  • I used Alexy's fork because he keeps it more updated with required changes (like using std++-11 etc.).
    W

  • Other excellent libraries such as pyyolo, Yolo34Py did not work for me with CUDA 10.1 and OpenCV 4.1. They all had compiler issues

How to use this library

By dead simple, I mean dead simple.

  • This module doesn't bother cloning/building darknet. Build it whichever way you want, and simply make libdarknet.so accessible to this module.

  • Modify cfg/coco.data names= to point to where you have the labels (typically coco.names)

  • See example.py

Sample:

import simpleyolo.simpleYolo as yolo

configPath='./cfg/yolov3.cfg'
weightPath='./yolov3.weights'
metaPath='./cfg/coco.data'
imagePath='data/dog.jpg'

# initialize
m = yolo.SimpleYolo(configPath=configPath, 
                    weightPath=weightPath, 
                    metaPath=metaPath, 
                    darknetLib='./libdarknet_gpu.so', 
                    useGPU=True)
print ('detecting...')
detections = m.detect(imagePath)
print (detections)

When to use/not to use

  • Use this library if you want GPU support for YoloV3.
  • DON'T USE THIS LIBRARY if you want CPU support. It will work, but OpenCV's DNN module for YoloV3 is around 10x faster than using darknet directly. Really.
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, OpenCV DNN YoloV3 with blas/atlas takes ~2-4s
  • On CPU, Intel Xeon 32GB RAM, 4 core, 3.1GHz, darkneti YoloV3 takes ~45s (gaah!)
  • BUT, on GPU, NVIDIA GeForce 1050 Ti, 4GB, same CPU, darknet YoloV3 takes 91ms (woot!)

If you really want to know how to get darknet working with OpenCV 4.1

Assuming you have built/installed CUDA/cuDNN and optionally OpenCV 4.1:

git clone https://github.com/AlexeyAB/darknet
cd darknet

Edit the Makefile, set:
GPU=1
CUDNN=1
LIBSO=1

If you want darknet to use OPENCV (not necessary), also set

OPENCV=1 

Notes:

  • You will make to change the Makefile to change pkg-config --libs opencv to pkg-config --libs opencv4 (2 instances). This will not be needed after Alexy fixes this issue

  • The above will only work if you previously compiled OpenCV 4+ with OPENCV_GENERATE_PKGCONFIG=ON and then copied the generated pc file like so: sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty, please, how do we build OpenCV 4.1 with CUDA 10.1?

Assuming you have built/installed CUDA/cuDNN:

git clone https://github.com/opencv/opencv
git clone https://github.com/opencv/opencv_contrib
cd opencv
mkdir build

cmake -D CMAKE_BUILD_TYPE=RELEASE \
        -D CMAKE_INSTALL_PREFIX=/usr/local \
        -D PYTHON_DEFAULT_EXECUTABLE=$(which python3) \
        -D INSTALL_PYTHON_EXAMPLES=OFF \
        -D INSTALL_C_EXAMPLES=OFF \
        -D OPENCV_ENABLE_NONFREE=ON \
        -D OPENCV_EXTRA_MODULES_PATH=/home/pp/opencv_contrib/modules \
        -D BUILD_EXAMPLES=OFF \
        -D WITH_CUDA=ON \
        -D ENABLE_FAST_MATH=ON \
        -D CUDA_FAST_MATH=ON \
        -D WITH_CUBLAS=ON \
        -D WITH_OPENCL=ON \
        -D BUILD_opencv_cudacodec=OFF \
        -D BUILD_opencv_world=OFF \
        -D WITH_NVCUVID=OFF \
        -D WITH_OPENGL=ON \
        -D BUILD_opencv_python3=ON \
        -D OPENCV_GENERATE_PKGCONFIG=ON \
        ..
make -j$(nproc)
sudo make install

# don't forget this, for darknet and other libs to find opencv4 later
sudo cp unix-install/opencv4.pc /usr/lib/pkgconfig/

Pretty pretty please, how do I build CUDA 10.1 and nvidia drivers?

Maybe later.

Owner
Pliable Pixels
I code like a Kindergartner
Pliable Pixels
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022