ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

Overview

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

This repository contains the source code of our paper, ESPNet (accepted for publication in ECCV'18).

Sample results

Check our project page for more qualitative results (videos).

Click on the below sample image to view the segmentation results on YouTube.

Structure of this repository

This repository is organized as:

  • train This directory contains the source code for trainig the ESPNet-C and ESPNet models.
  • test This directory contains the source code for evaluating our model on RGB Images.
  • pretrained This directory contains the pre-trained models on the CityScape dataset
    • encoder This directory contains the pretrained ESPNet-C models
    • decoder This directory contains the pretrained ESPNet models

Performance on the CityScape dataset

Our model ESPNet achives an class-wise mIOU of 60.336 and category-wise mIOU of 82.178 on the CityScapes test dataset and runs at

  • 112 fps on the NVIDIA TitanX (30 fps faster than ENet)
  • 9 FPS on TX2
  • With the same number of parameters as ENet, our model is 2% more accurate

Performance on the CamVid dataset

Our model achieves an mIOU of 55.64 on the CamVid test set. We used the dataset splits (train/val/test) provided here. We trained the models at a resolution of 480x360. For comparison with other models, see SegNet paper.

Note: We did not use the 3.5K dataset for training which was used in the SegNet paper.

Model mIOU Class avg.
ENet 51.3 68.3
SegNet 55.6 65.2
ESPNet 55.64 68.30

Pre-requisite

To run this code, you need to have following libraries:

  • OpenCV - We tested our code with version > 3.0.
  • PyTorch - We tested with v0.3.0
  • Python - We tested our code with Pythonv3. If you are using Python v2, please feel free to make necessary changes to the code.

We recommend to use Anaconda. We have tested our code on Ubuntu 16.04.

Citation

If ESPNet is useful for your research, then please cite our paper.

@inproceedings{mehta2018espnet,
  title={ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation},
  author={Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda Shapiro, and Hannaneh Hajishirzi},
  booktitle={ECCV},
  year={2018}
}

FAQs

Assertion error with class labels (t >= 0 && t < n_classes).

If you are getting an assertion error with class labels, then please check the number of class labels defined in the label images. You can do this as:

import cv2
import numpy as np
labelImg = cv2.imread(<label_filename.png>, 0)
unique_val_arr = np.unique(labelImg)
print(unique_val_arr)

The values inside unique_val_arr should be between 0 and total number of classes in the dataset. If this is not the case, then pre-process your label images. For example, if the label iamge contains 255 as a value, then you can ignore these values by mapping it to an undefined or background class as:

labelImg[labelImg == 255] = <undefined class id>
Owner
Sachin Mehta
Research Scientist at Apple and Affiliate Assistant Professor at UW
Sachin Mehta
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
When are Iterative GPs Numerically Accurate?

When are Iterative GPs Numerically Accurate? This is a code repository for the paper "When are Iterative GPs Numerically Accurate?" by Wesley Maddox,

Wesley Maddox 1 Jan 06, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022