Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Overview

logo

Inkstone simulates the electromagnetic properties of 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, vertical-cavity or photonic-crystal surface-emitting lasers (VCSEL, PCSEL), (patterned) solar cells, nano-antennas, and more.

Internally, Inkstone implements rigorous coupled-wave analysis (RCWA), a. k. a. Fourier Modal Method (FMM).

Inkstone can calculate:

  • the reflection, transmission, and absorption of the structure
  • the total and by-order power fluxes of the propagating and the evanescent waves in each layer
  • electric and magnetic field amplitudes at any locations in the structure,
  • band-structures based on the determinant of the scattering matrix of the structure.

Features of Inkstone:

  • It supports efficient and flexible parameter-scanning. You can change part of your structure such as the shapes and sizes of some patterns, or some material parameters. Inkstone only recalculates the modified parts and produces the final results efficiently.
  • It allows both tensorial permittivities and tensorial permeabilities, such as in anisotropic, magneto-optical, or gyromagnetic materials.
  • It can calculate the determinant of the scattering matrix on the complex frequency plane.
  • Pre-defined shapes of patterns can be used, including rectangular, parallelogram, disk, ellipse, 1D, and polygons. Closed-form Fourier transforms and corrections for Gibbs phenomena are implemented.
  • It is fully 3D.
  • It is written in pure python, with heavy-lifting done in numpy and scipy.

Quick Start

Installation:

$ pip install inkstone

Or,

$ git clone git://github.com/alexysong/inkstone
$ pip install .

Usage

The examples folder contains various self-explaining examples to get you started.

Dependencies

  • python 3.6+
  • numpy
  • scipy

Units, conventions, and definitions

Unit system

We adopt a natural unit system, where vacuum permittivity, permeability, and light speed are $\varepsilon_0=\mu_0=c_0=1$.

Sign convention

Sign conventions in electromagnetic waves:

$$e^{i(kx-\omega t)}$$

where $k$ is the wavevector, $x$ is spatial location, $\omega$ is frequency, $t$ is time.

By this convention, a permittivity of $\varepsilon_r + i\varepsilon_i$ with $\varepsilon_i>0$ means material loss, and $\varepsilon_i<0$ means material gain.

Coordinates and incident angles

drawing

(Inkstone, Incident $\bm{k}$ on stacked periodic nano electromagnetic structures.)

Citing

If you find Inkstone useful for your research, we would apprecite you citing our paper. For your convenience, you can use the following BibTex entry:

@article{song2018broadband,
  title={Broadband Control of Topological Nodes in Electromagnetic Fields},
  author={Song, Alex Y and Catrysse, Peter B and Fan, Shanhui},
  journal={Physical review letters},
  volume={120},
  number={19},
  pages={193903},
  year={2018},
  publisher={American Physical Society}
}
You might also like...
Code for
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

 Layered Neural Atlases for Consistent Video Editing
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Comments
  • Unable to verify Fresnel equations

    Unable to verify Fresnel equations

    Thank you for your transparent and usable Python port of S4.

    To verify that the code works correctly, I attempted to reproduce the Fresnel equations using a simple two layer model -- the first layer with n=1, and the second with n=1.5. I have been unable to get this to work in Inkstone, but I did get it to work with an equivalent code for Phoebe-P S4 . Attached are the codes I used for both Inkstone, fresnel_inkstone_te.py (which doesn't work); and S4, Fresnel_S4_TE.py (working).

    In inkstone, when I use angle = np.linspace(0, 90, 91) , I get the error: /inkstone/params.py:525: RuntimeWarning: Vacuum propagation constant 0 encountered. Possibly Wood's anomaly. warn("Vacuum propagation constant 0 encountered. Possibly Wood's anomaly.", RuntimeWarning)

    When I use angle = np.linspace(1, 90, 90) , I get the error: Traceback (most recent call last): File "fresnel_inkstone_te.py", line 71, in glapf, glapb = s.GetPowerFlux('gla') File "/inkstone/simulator.py", line 1204, in GetPowerFlux self.solve() File "/inkstone/simulator.py", line 890, in solve self._calc_sm() File "/inkstone/simulator.py", line 704, in _calc_sm s = next(ll[-1] for ll in self.csms if ll[-1][1] == n_layers-2) StopIteration

    If between the "air" air and "gla" glass layers, I add an intermediate layer: s.AddLayer(name='gla-int', thickness=1, material_background='glass')

    and still keep angle = np.linspace(1, 90, 90) then I get the error

    /.local/lib/python3.9/site-packages/inkstone/layer.py:545: RuntimeWarning: divide by zero encountered in divide vh = -1j * p @ v / w[:, None, :] /.local/lib/python3.9/site-packages/inkstone/layer.py:545: RuntimeWarning: invalid value encountered in divide vh = -1j * p @ v / w[:, None, :] Traceback (most recent call last): File "/inkstone/Fresnel_Inkstone/fresnel_inkstone_te.py", line 72, in glapf, glapb = s.GetPowerFlux('gla') File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 1204, in GetPowerFlux self.solve() File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 890, in solve self._calc_sm() File "/.local/lib/python3.9/site-packages/inkstone/simulator.py", line 682, in _calc_sm ll[ilm].solve() File "/.local/lib/python3.9/site-packages/inkstone/layer.py", line 702, in solve self._calc_im() File "/.local/lib/python3.9/site-packages/inkstone/layer.py", line 652, in _calc_im al0, bl0 = im(self.phil, self.psil, self.pr.phi0, self.pr.psi0, self._phil_is_idt) File "/.local/lib/python3.9/site-packages/inkstone/im.py", line 36, in im term2 = sla.solve(psi1, psi2) File "/.local/lib/python3.9/site-packages/scipy/linalg/_basic.py", line 140, in solve a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite)) File "/.local/lib/python3.9/site-packages/scipy/_lib/_util.py", line 287, in _asarray_validated a = toarray(a) File "/.local/lib/python3.9/site-packages/numpy/lib/function_base.py", line 627, in asarray_chkfinite raise ValueError( ValueError: array must not contain infs or NaNs

    opened by matt8s 0
  • IndexError when calling

    IndexError when calling "ReconstructLayer"

    Hi,

    I'm trying to visualize the epsilon profile of the patterned layer named "slab" in the example file "phc_slab_circ_hole_spectrum.py", using ReconstructLayer (as defined on line 309 of simulator.py).

    I'm not entirely sure about the correct usage of ReconstructLayer but I'm just doing: s.ReconstructLayer('slab', 100, 100) or s.ReconstructLayer('slab') (since nx and ny both seem to default to 101). In both cases, I get the error:

    Traceback (most recent call last):
      File "phc_slab_circ_hole_spectrum.py", line 32, in <module>
        s.ReconstructLayer('slab')
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/inkstone/simulator.py", line 337, in ReconstructLayer
        result = self.layers[name].reconstruct(nx, ny)
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/inkstone/layer.py", line 395, in reconstruct
        for em in [fft.ifftshift(self.epsi_fs, axes=(0, 1)), fft.ifftshift(self.epsi_inv_fs, axes=(0, 1)), fft.ifftshift(self.mu_fs, axes=(0, 1)), fft.ifftshift(self.mu_inv_fs, axes=(0, 1))]]
      File "<__array_function__ internals>", line 6, in ifftshift
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/numpy/fft/helper.py", line 121, in ifftshift
        shift = [-(x.shape[ax] // 2) for ax in axes]
      File "/home/sachin/miniconda3/lib/python3.7/site-packages/numpy/fft/helper.py", line 121, in <listcomp>
        shift = [-(x.shape[ax] // 2) for ax in axes]
    IndexError: tuple index out of range
    

    Could you please help me with this?

    Thanks!

    opened by sachin4594 0
Releases(v0.2.4-alpha)
Owner
Alex Song
Senior Lecturer at the University of Sydney. Research interests include nanophotonics, topological materials, non-Hermicity, quantum optics, and sustainability.
Alex Song
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
SparseInst: Sparse Instance Activation for Real-Time Instance Segmentation, CVPR 2022

SparseInst 🚀 A simple framework for real-time instance segmentation, CVPR 2022 by Tianheng Cheng, Xinggang Wang†, Shaoyu Chen, Wenqiang Zhang, Qian Z

Hust Visual Learning Team 458 Jan 05, 2023
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process

Aiming at the common training datsets split, spectrum preprocessing, wavelength select and calibration models algorithm involved in the spectral analysis process, a complete algorithm library is esta

Fu Pengyou 50 Jan 07, 2023
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022