The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

Overview

IFood MLE Test

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

https://github.com/ifood/ifood-data-ml-engineer-test

Projeto: API para servir modelos com Flask, Gunicorn e Docker

Autor: George Rocha

Estrutura do projeto:

.
├── AutoML
│   └── AutoML_h2o.ipynb
├── AWS_infra
│   └── AWS Infrastructure.pdf
├── IFood_API
│   ├── docs
│   │   ├── Document Live.txt
│   │   └── Document Static.html
│   ├── flask_docker
│   │   ├── Dockerfile
│   │   ├── exec.py
│   │   ├── mls.py
│   │   ├── my_app.py
│   │   ├── path.json
│   │   ├── requirements.txt
│   │   ├── setup.py
│   │   └── wsgi.py
│   └── notebook
│       └── example.ipynb
└── READ.me

Installation

Dependencies, this application requires:

Python (>= 3.7)
Docker (= 20.10.12)

Please follow the link bellow for more information on docker:

https://docs.docker.com/engine/install/ubuntu/

Alteração da url de origem dos dados

Para alterar as origens e destinos dos arquivos salvos, favor alterar o arquivo path.json onde:

"modeldata": dados como informações salvas pelo AutoML, info, modelos, arquivos de teste,
"procdata": dados como dados pre processados que serão utilizados para treinar e validar o modelo

Abaixo segue um exemplo:

{	
"modeldata":"https://s3model.blob.core.windows.net/modeldata/",
"procdata":"https://s3model.blob.core.windows.net/prodata/"
}

Execução

No diretório /IFood_ML/IFood_API/flask_docker/ digite no terminal o seguinte comando:

python setup.py

A última linha mostrará a porta que o docker fez o bind com o host. Exemplo:

8000/tcp, :::49171->8000/tcp serene_matsumoto">
CONTAINER ID   IMAGE          COMMAND             CREATED         STATUS                  PORTS                                         NAMES
ac5bb0615e0a   flask_docker   "python3 exec.py"   2 seconds ago   Up Less than a second   0.0.0.0:49171->8000/tcp, :::49171->8000/tcp   serene_matsumoto

Documentation

https://app.swaggerhub.com/apis-docs/george53/MLS/1.0.0

AutoML

Executar o notebook IFood_AutoML_h2o no diretório AutoML para criar um modelo, tempo para criação de um minuto na configuração atual.


Exemplo:

Executar o notebook exemplo.ipynb IFood_ML/IFood_API/notebooks para enviar e receber os dados.

Get:

  pd.read_json(requests.get('http://0.0.0.0:49171/').content)

Post:

  r = requests.post('http://0.0.0.0:49171/', data=data).content
  
  prediction = pd.read_json(r)

Owner
George Rocha
George Rocha
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022