E2VID_ROS - E2VID_ROS: E2VID to a real-time system

Overview

E2VID_ROS

Introduce

We extend E2VID to a real-time system. Because Python ROS callback has a large delay, we use dvs_event_server to transport "dvs/events" ROS topic to Python.

Install with Anaconda

In addition to dependencies E2VID needs, some packages are needed. Enter the E2VID conda environment, and then

pip install rospkg
pip install pyzmq
pip install protobuf

Usage

Adjust the event camera parameter according to your camera and surroundings in run_reconstruction_ros.py

self.width = 346
self.height = 260
self.event_window_size = 30000

Adjust the event topic name and the event window size in dvs_event_server.launch

<param name="/event_topic_name" type="str" value="/dvs/events"/>
<param name="/event_window_size" type="int" value="30000" />

Make sure the ip address and the port are the same as the dvs_event_server.launch in run_reconstruction_ros.py

self.socket.connect('tcp://127.0.0.1:10001')
<param name="/ip_address" type="str" value="127.0.0.1" />
<param name="/port" type="str" value="10001" />

First run dvs_event_server

roslaunch dvs_event_server dvs_event_server.launch

And then run E2VID_ROS (when closing, run_reconstruction_ros.py should be closed before dvs_event_server)

python run_reconstruction_ros.py

You can play the rosbag or use your own camera

rosbag play example.bag

You can use dvs_renderer or dv_ros to compare the reconstructed frame with the event frame.

You can use rqt_image_view or rviz to visualize the /e2vid/image topic




High Speed and High Dynamic Range Video with an Event Camera

High Speed and High Dynamic Range Video with an Event Camera

This is the code for the paper High Speed and High Dynamic Range Video with an Event Camera by Henri Rebecq, Rene Ranftl, Vladlen Koltun and Davide Scaramuzza:

You can find a pdf of the paper here. If you use any of this code, please cite the following publications:

@Article{Rebecq19pami,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {High Speed and High Dynamic Range Video with an Event Camera},
  journal       = {{IEEE} Trans. Pattern Anal. Mach. Intell. (T-PAMI)},
  url           = {http://rpg.ifi.uzh.ch/docs/TPAMI19_Rebecq.pdf},
  year          = 2019
}
@Article{Rebecq19cvpr,
  author        = {Henri Rebecq and Ren{\'{e}} Ranftl and Vladlen Koltun and Davide Scaramuzza},
  title         = {Events-to-Video: Bringing Modern Computer Vision to Event Cameras},
  journal       = {{IEEE} Conf. Comput. Vis. Pattern Recog. (CVPR)},
  year          = 2019
}

Install

Dependencies:

Install with Anaconda

The installation requires Anaconda3. You can create a new Anaconda environment with the required dependencies as follows (make sure to adapt the CUDA toolkit version according to your setup):

conda create -n E2VID
conda activate E2VID
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
conda install pandas
conda install -c conda-forge opencv

Run

  • Download the pretrained model:
wget "http://rpg.ifi.uzh.ch/data/E2VID/models/E2VID_lightweight.pth.tar" -O pretrained/E2VID_lightweight.pth.tar
  • Download an example file with event data:
wget "http://rpg.ifi.uzh.ch/data/E2VID/datasets/ECD_IJRR17/dynamic_6dof.zip" -O data/dynamic_6dof.zip

Before running the reconstruction, make sure the conda environment is sourced:

conda activate E2VID
  • Run reconstruction:
python run_reconstruction.py \
  -c pretrained/E2VID_lightweight.pth.tar \
  -i data/dynamic_6dof.zip \
  --auto_hdr \
  --display \
  --show_events

Parameters

Below is a description of the most important parameters:

Main parameters

  • --window_size / -N (default: None) Number of events per window. This is the parameter that has the most influence of the image reconstruction quality. If set to None, this number will be automatically computed based on the sensor size, as N = width * height * num_events_per_pixel (see description of that parameter below). Ignored if --fixed_duration is set.
  • --fixed_duration (default: False) If True, will use windows of events with a fixed duration (i.e. a fixed output frame rate).
  • --window_duration / -T (default: 33 ms) Duration of each event window, in milliseconds. The value of this parameter has strong influence on the image reconstruction quality. Its value may need to be adapted to the dynamics of the scene. Ignored if --fixed_duration is not set.
  • --Imin (default: 0.0), --Imax (default: 1.0): linear tone mapping is performed by normalizing the output image as follows: I = (I - Imin) / (Imax - Imin). If --auto_hdr is set to True, --Imin and --Imax will be automatically computed as the min (resp. max) intensity values.
  • --auto_hdr (default: False) Automatically compute --Imin and --Imax. Disabled when --color is set.
  • --color (default: False): if True, will perform color reconstruction as described in the paper. Only use this with a color event camera such as the Color DAVIS346.

Output parameters

  • --output_folder: path of the output folder. If not set, the image reconstructions will not be saved to disk.
  • --dataset_name: name of the output folder directory (default: 'reconstruction').

Display parameters

  • --display (default: False): display the video reconstruction in real-time in an OpenCV window.
  • --show_events (default: False): show the input events side-by-side with the reconstruction. If --output_folder is set, the previews will also be saved to disk in /path/to/output/folder/events.

Additional parameters

  • --num_events_per_pixel (default: 0.35): Parameter used to automatically estimate the window size based on the sensor size. The value of 0.35 was chosen to correspond to ~ 15,000 events on a 240x180 sensor such as the DAVIS240C.
  • --no-normalize (default: False): Disable event tensor normalization: this will improve speed a bit, but might degrade the image quality a bit.
  • --no-recurrent (default: False): Disable the recurrent connection (i.e. do not maintain a state). For experimenting only, the results will be flickering a lot.
  • --hot_pixels_file (default: None): Path to a file specifying the locations of hot pixels (such a file can be obtained with this tool for example). These pixels will be ignored (i.e. zeroed out in the event tensors).

Example datasets

We provide a list of example (publicly available) event datasets to get started with E2VID.

Working with ROS

Because PyTorch recommends Python 3 and ROS is only compatible with Python2, it is not straightforward to have the PyTorch reconstruction code and ROS code running in the same environment. To make things easy, the reconstruction code we provide has no dependency on ROS, and simply read events from a text file or ZIP file. We provide convenience functions to convert ROS bags (a popular format for event datasets) into event text files. In addition, we also provide scripts to convert a folder containing image reconstructions back to a rosbag (or to append image reconstructions to an existing rosbag).

Note: it is not necessary to have a sourced conda environment to run the following scripts. However, ROS needs to be installed and sourced.

rosbag -> events.txt

To extract the events from a rosbag to a zip file containing the event data:

python scripts/extract_events_from_rosbag.py /path/to/rosbag.bag \
  --output_folder=/path/to/output/folder \
  --event_topic=/dvs/events

image reconstruction folder -> rosbag

python scripts/image_folder_to_rosbag.py \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Append image_reconstruction_folder to an existing rosbag

cd scripts
python embed_reconstructed_images_in_rosbag.py \
  --rosbag_folder /path/to/rosbag/folder \
  --datasets dynamic_6dof \
  --image_folder /path/to/image/folder \
  --output_folder /path/to/output_folder \
  --image_topic /dvs/image_reconstructed

Generating a video reconstruction (with a fixed framerate)

It can be convenient to convert an image folder to a video with a fixed framerate (for example for use in a video editing tool). You can proceed as follows:

export FRAMERATE=30
python resample_reconstructions.py -i /path/to/input_folder -o /tmp/resampled -r $FRAMERATE
ffmpeg -framerate $FRAMERATE -i /tmp/resampled/frame_%010d.png video_"$FRAMERATE"Hz.mp4

Acknowledgements

This code borrows from the following open source projects, whom we would like to thank:

Owner
Robin Shaun
Aerospace Engineering
Robin Shaun
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
Simulation-based inference for the Galactic Center Excess

Simulation-based inference for the Galactic Center Excess Siddharth Mishra-Sharma and Kyle Cranmer Abstract The nature of the Fermi gamma-ray Galactic

Siddharth Mishra-Sharma 3 Jan 21, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022