Repositório para o #alurachallengedatascience1

Overview

1° Challenge de Dados - Alura

Badge em Desenvolvimento

A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas. Logo na primeira semana, a liderança nos informa que é muito necessário realizar um estudo quanto ao Churn da empresa. É explicado que o churn indica se um cliente cancelou ou não o contrato com a empresa, e também que, nos casos de perda do cliente a empresa também perde faturamento, o que ocasiona prejuizos na receita final.

Desse modo, nossa liderança informa que temos 4 semanas para buscar uma alternativa que possa minimizar a saída de clientes e nos entrega um conjunto de dados da Alura Voz que contém diversas informações sobre os clientes e também informa se eles deixaram ou não a empresa.

Sabemos que, antes de pensar em qualquer alternaiva, é preciso entender as informações que recebemos e, após uma pequena reunião, concluímos que na primeira semana nós nos dedicaríamos a entender o banco de dados, descobrir os tipos de dados, verificar a existencia de valores incoerentos e corrigi-los caso seja necessário.

Semana 1 - Limpeza dos dados

Dados

Ao observar a Base de dados da Alura Voz, verificamos que essa é uma base disponibilizada via API em formato JSON com várias camandas de dados.

Junnto a esses dados também foi disponibilizado o dicionário dos dados que nele contém todas as informações sobre as colunas do banco de dados.

Nela, além da informação se o cliente deixou ou não a empresa, também contém:

Cliente:

  • gender: gênero (masculino e feminino)
  • SeniorCitizen: informação sobre um cliente ter ou não idade igual ou maior que 65 anos
  • Partner: se o cliente possui ou não um parceiro ou parceira
  • Dependents: se o cliente possui ou não dependentes

Serviço de telefonia

  • tenure: meses de contrato do cliente
  • PhoneService: assinatura de serviço telefônico
  • MultipleLines: assisnatura de mais de uma linha de telefone

Serviço de internet

  • InternetService: assinatura de um provedor internet
  • OnlineSecurity: assinatura adicional de segurança online
  • OnlineBackup: assinatura adicional de backup online
  • DeviceProtection: assinatura adicional de proteção no dispositivo
  • TechSupport: assinatura adicional de suporte técnico, menos tempo de espera
  • StreamingTV: assinatura de TV a cabo
  • StreamingMovies: assinatura de streaming de filmes

Contrato

  • Contract: tipo de contrato
  • PaperlessBilling: se o cliente prefere receber online a fatura
  • PaymentMethod: forma de pagamento
  • Charges.Monthly: total de todos os serviços do cliente por mês
  • Charges.Total: total gasto pelo cliente

Tendo essas informações entendemos nossos dados e, assim, podemos realizar uma análise mais técnica, buscando entender JSON, os dados e realizar o tratamento deles.

Todo o desenvolvimento feito na nossa 1° semana pode ser observado no notebook semana 1.

#alura #alurachallengedatascience1

Conheça a equipe

Sthefanie Monica

Bacharela em Engenharia Elétrica pela UTFPR e atualmente instrutora de Data Science na Alura. Durante o período de graduação realizei diversas pesquisas voltadas à redes neurais e visão computacional, inclusive um período de pesquisa no Hospital Israelita Albert Einstein. No meu tempo livre adoro jogar, seja boardgames ou jogos eletrônicos, e amo conhecer novos lugares e pessoas, então estou sempre planejando a próxima viagem.

Ana Clara

Sou bacharela em Informática Biomédica e atualmente mestranda em Bioengenharia, ambas pela USP. Atuo como pesquisadora FAPESP e instrutora na Escola de Dados da Alura. Já realizei estágio no Hospital das Clínicas-FMRP, sou cofundadora e atual conselheira do grupo Data Girls. Possuo grande interesse na área de Ciência de Dados e Inteligência Artificial com aplicações em diferentes áreas de negócio. Além disso sou apaixonada por livros, séries, games e um bom café.

Bruno Raphaell

Estudante de engenharia elétrica na Universidade Federal do Piauí (UFPI) e atualmente scuba de Data Science na Alura. Apaixonado por música, filmes biográficos e programação. No tempo livre tento sair do prata no LoL, tocar algum instrumento e assistir filmes e séries.

João Miranda

Bacharel em Matemática pela UFMG e cursando MBA em Data Science e Analytics na USP/Esalq. Atualmente sou monitor na Escola de Dados do grupo Alura. Gosta muito de livros, jogos eletrônicos, boardgames e tiro com arco.

Mirla Costa

Graduanda em Engenharia elétrica pela Universidade Federal do Piauí com pesquisa focada em Aprendizado de Máquina e Inteligência Computacional. Atuo como Scuba na escola de Data Science da Alura sempre amei muito programar, ensinar de trabalhar com tecnologia. Meu tempo livre dedico a brincar com meus animias, assistir animações e séries, além de jogar RPG de mesa.

Owner
Sthe Monica
Instrutora da Alura, engenheira, player de RPG, joguinhos online e apaixonada por tecnologia desde pequena.
Sthe Monica
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
Python bindings for MPI

MPI for Python Overview Welcome to MPI for Python. This package provides Python bindings for the Message Passing Interface (MPI) standard. It is imple

MPI for Python 604 Dec 29, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Time series forecasting with PyTorch

Our article on Towards Data Science introduces the package and provides background information. Pytorch Forecasting aims to ease state-of-the-art time

Jan Beitner 2.5k Jan 02, 2023
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
Scikit-learn compatible wrapper of the Random Bits Forest program written by (Wang et al., 2016)

sklearn-compatible Random Bits Forest Scikit-learn compatible wrapper of the Random Bits Forest program written by Wang et al., 2016, available as a b

Tamas Madl 8 Jul 24, 2021
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022