The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Related tags

Deep LearningPIRender
Overview

Website | ArXiv | Get Start | Video

PIRenderer

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering" (ICCV2021)

The proposed PIRenderer can synthesis portrait images by intuitively controlling the face motions with fully disentangled 3DMM parameters. This model can be applied to tasks such as:

  • Intuitive Portrait Image Editing

    Intuitive Portrait Image Control

    Pose & Expression Alignment

  • Motion Imitation

    Same & Corss-identity Reenactment

  • Audio-Driven Facial Reenactment

    Audio-Driven Reenactment

News

  • 2021.9.20 Code for PyTorch is available!

Colab Demo

Coming soon

Get Start

1). Installation

Requirements

  • Python 3
  • PyTorch 1.7.1
  • CUDA 10.2

Conda Installation

# 1. Create a conda virtual environment.
conda create -n PIRenderer python=3.6
conda activate PIRenderer
conda install -c pytorch pytorch=1.7.1 torchvision cudatoolkit=10.2

# 2. Install other dependencies
pip install -r requirements.txt

2). Dataset

We train our model using the VoxCeleb. You can download the demo dataset for inference or prepare the dataset for training and testing.

Download the demo dataset

The demo dataset contains all 514 test videos. You can download the dataset with the following code:

./scripts/download_demo_dataset.sh

Or you can choose to download the resources with these links:

Google Driven & BaiDu Driven with extraction passwords ”p9ab“

Then unzip and save the files to ./dataset

Prepare the dataset

  1. The dataset is preprocessed follow the method used in First-Order. You can follow the instructions in their repo to download and crop videos for training and testing.

  2. After obtaining the VoxCeleb videos, we extract 3DMM parameters using Deep3DFaceReconstruction.

    The folder are with format as:

    ${DATASET_ROOT_FOLDER}
    └───path_to_videos
    		└───train
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    		└───test
    				└───xxx.mp4
    				└───xxx.mp4
    				...
    └───path_to_3dmm_coeff
    		└───train
    				└───xxx.mat
    				└───xxx.mat
    				...
    		└───test
    				└───xxx.mat
    				└───xxx.mat
    				...
    
  3. We save the video and 3DMM parameters in a lmdb file. Please run the following code to do this

    python scripts/prepare_vox_lmdb.py \
    --path path_to_videos \
    --coeff_3dmm_path path_to_3dmm_coeff \
    --out path_to_output_dir

3). Training and Inference

Inference

The trained weights can be downloaded by running the following code:

./scripts/download_weights.sh

Or you can choose to download the resources with these links: coming soon. Then save the files to ./result/face

Reenactment

Run the the demo for face reenactment:

python -m torch.distributed.launch --nproc_per_node=1 --master_port 12345 inference.py \
--config ./config/face.yaml \
--name face \
--no_resume \
--output_dir ./vox_result/face_reenactment

The output results are saved at ./vox_result/face_reenactment

Intuitive Control

coming soon

Train

Our model can be trained with the following code

python -m torch.distributed.launch --nproc_per_node=4 --master_port 12345 train.py \
--config ./config/face.yaml \
--name face

Citation

If you find this code is helpful, please cite our paper

@misc{ren2021pirenderer,
      title={PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering}, 
      author={Yurui Ren and Ge Li and Yuanqi Chen and Thomas H. Li and Shan Liu},
      year={2021},
      eprint={2109.08379},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

We build our project base on imaginaire. Some dataset preprocessing methods are derived from video-preprocessing.

Owner
Ren Yurui
Ren Yurui
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Expressive Power of Invariant and Equivaraint Graph Neural Networks (ICLR 2021)

Expressive Power of Invariant and Equivaraint Graph Neural Networks In this repository, we show how to use powerful GNN (2-FGNN) to solve a graph alig

Marc Lelarge 36 Dec 12, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
DiSECt: Differentiable Simulator for Robotic Cutting

DiSECt: Differentiable Simulator for Robotic Cutting Website | Paper | Dataset | Video | Blog post DiSECt is a simulator for the cutting of deformable

NVIDIA Research Projects 73 Oct 29, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
You Only 👀 One Sequence

You Only 👀 One Sequence TL;DR: We study the transferability of the vanilla ViT pre-trained on mid-sized ImageNet-1k to the more challenging COCO obje

Hust Visual Learning Team 666 Jan 03, 2023
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022