A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

Overview

CoVA: Context-aware Visual Attention for Webpage Information Extraction

Abstract

Webpage information extraction (WIE) is an important step to create knowledge bases. For this, classical WIE methods leverage the Document Object Model (DOM) tree of a website. However, use of the DOM tree poses significant challenges as context and appearance are encoded in an abstract manner. To address this challenge we propose to reformulate WIE as a context-aware Webpage Object Detection task. Specifically, we develop a Context-aware Visual Attention-based (CoVA) detection pipeline which combines appearance features with syntactical structure from the DOM tree. To study the approach we collect a new large-scale dataset of e-commerce websites for which we manually annotate every web element with four labels: product price, product title, product image and background. On this dataset we show that the proposed CoVA approach is a new challenging baseline which improves upon prior state-of-the-art methods.

CoVA Dataset

We labeled 7,740 webpages spanning 408 domains (Amazon, Walmart, Target, etc.). Each of these webpages contains exactly one labeled price, title, and image. All other web elements are labeled as background. On average, there are 90 web elements in a webpage.

Webpage screenshots and bounding boxes can be obtained here

Train-Val-Test split

We create a cross-domain split which ensures that each of the train, val and test sets contains webpages from different domains. Specifically, we construct a 3 : 1 : 1 split based on the number of distinct domains. We observed that the top-5 domains (based on number of samples) were Amazon, EBay, Walmart, Etsy, and Target. So, we created 5 different splits for 5-Fold Cross Validation such that each of the major domains is present in one of the 5 splits for test data. These splits can be accessed here

CoVA End-to-end Training Pipeline

Our Context-Aware Visual Attention-based end-to-end pipeline for Webpage Object Detection (CoVA) aims to learn function f to predict labels y = [y1, y2, ..., yN] for a webpage containing N elements. The input to CoVA consists of:

  1. a screenshot of a webpage,
  2. list of bounding boxes [x, y, w, h] of the web elements, and
  3. neighborhood information for each element obtained from the DOM tree.

This information is processed in four stages:

  1. the graph representation extraction for the webpage,
  2. the Representation Network (RN),
  3. the Graph Attention Network (GAT), and
  4. a fully connected (FC) layer.

The graph representation extraction computes for every web element i its set of K neighboring web elements Ni. The RN consists of a Convolutional Neural Net (CNN) and a positional encoder aimed to learn a visual representation vi for each web element i ∈ {1, ..., N}. The GAT combines the visual representation vi of the web element i to be classified and those of its neighbors, i.e., vk ∀k ∈ Ni to compute the contextual representation ci for web element i. Finally, the visual and contextual representations of the web element are concatenated and passed through the FC layer to obtain the classification output.

Pipeline

Experimental Results

Table of Comparison Cross Domain Accuracy (mean ± standard deviation) for 5-fold cross validation.

NOTE: Cross Domain means we train the model on some web domains and test it on completely different domains to evaluate the generalizability of the models to unseen web templates.

Attention Visualizations!

Attention Visualizations Attention Visualizations where red border denotes web element to be classified, and its contexts have green shade whose intensity denotes score. Price in (a) get much more score than other contexts. Title and image in (b) are scored higher than other contexts for price.

Cite

If you find this useful in your research, please cite our ArXiv pre-print:

Coming soon!
Owner
Keval Morabia
AI @bloomberg | UIUC CS | Ex - AWS, Microsoft Research
Keval Morabia
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Large scale embeddings on a single machine.

Marius Marius is a system under active development for training embeddings for large-scale graphs on a single machine. Training on large scale graphs

Marius 107 Jan 03, 2023
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Interpretable-contrastive-word-mover-s-embedding

Interpretable-contrastive-word-mover-s-embedding Paper Datasets Here is a Dropbox link to the datasets used in the paper: https://www.dropbox.com/sh/n

0 Nov 02, 2021
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022