healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

Overview

health-lesion-stovol

healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

Reference

please cite this paper if you use this code: Piray P and Daw ND, 'A model for learning based on the joint estimation of stochasticity and volatility', 2021, Nature Communications.

Description of the models

This work addresses the problem of learning in noisy environments, in which the agent must draw inferences (e.g., about true reward rates) from observations (individual reward amounts) that are corrupted by two distinct sources of noise: process noise or volatility and observation noise or stochasticity. Volatility captures the speed by which the true value being estimated changes from trial to trial (modeled as Gaussian diffusion); stochasticity describes additional measurement noise in the observation of each outcome around its true value (modeled as Gaussian noise on each trial). The celebrated Kalman filter makes inference based on known value for both stochasticity and volatility, in which volatility and stochasticity have opposite effects on the learning rate (i.e. Kalman gain): whereas volatility increases the learning rate, stochasticity decreases the learning rate.

The learning models implemented here generalize the Kalman filter by also learning both stochasticity and volatility based on observations. An important point is that inferences about volatility and stochasticity are mutually interdependent. But the details of the interdependence are themselves informative. From the learner’s perspective, a challenging problem is to distinguish volatility from stochasticity when both are unknown, because both of them increase the noisiness of observations. Disentangling their respective contributions requires trading off two opposing explanations for the pattern of observations, a process known in Bayesian probability theory as explaining away. This insight results in two lesion models: a stochasticity lesion model that tends to misidentify stochasticity as volatility and inappropriately increases learning rates; and a volatility lesion model that tends to misidentify volatility as stochasticity and inappropriately decreases learning rates.

Description of the code

learning_models.py contains two classes of learning models:

  1. LearningModel that includes the healthy model and two lesion models (stochasticity lesion and volatility lesion models)
  2. LearningModelGaussian is similar to LearningModel with the Gaussian generative processes for stochasticity and volatility diffusion.

Inference in both classes is based on a combination of particle filter and Kalman filter. Given particles for stochasticity and volatility, the Kalman filter updates its estimation of the mean and variance of the state (e.g. reward rate). The main results shown in the reference paper (see below) is very similar for both classes of generative process. The particle filter has been implemented in the particle_filter.py

sim_example.py simulates the healthy model in a 2x2 factorial design (with two different true values for both true stochasticity and volatility). The model does not know about the true values and should learn them from observations. Initial values for both stochasticity and volatility are assumed to be the mean of their corresponding true values (and so not helpful for dissociation). This is akin to Figure 2 of the reference paper.

sim_lesion_example.py also simulates the lesions models in the 2x2 factorial design described above. This is akin to Figure 3 of the reference paper.

Dependencies:

numpy (required for computations in particle_filter.py and learning_models.py) matplotlib (required for visualization in sim_example and sim_lesion_example) seaborn (required for visualization in sim_example and sim_lesion_example) pandas (required for visualization in sim_example and sim_lesion_example)

Other languages

The MATLAB implementation of the model is also available: https://github.com/payampiray/stochasticity_volatility_learning

Author

Payam Piray (ppiray [at] princeton.edu)

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search (Manhattan Distance Heuristic)

A Python-based application demonstrating various search algorithms, namely Depth-First Search (DFS), Breadth-First Search (BFS), and the A* Search (using the Manhattan Distance Heuristic)

17 Aug 14, 2022
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022