Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

Overview

IMBENS: Class-imbalanced Ensemble Learning in Python

Documentation Status

Language: English | Chinese/中文

Links: Documentation | Gallery | PyPI | Changelog | Source | Download | 知乎/Zhihu | arXiv

Paper: IMBENS: Ensemble Class-imbalanced Learning in Python

imbalanced-ensemble (IMBENS, imported as imbalanced_ensemble) is a Python toolbox for quick implementation, modification, evaluation, and visualization of ensemble learning algorithms for class-imbalanced data. The problem of learning from imbalanced data is known as imbalanced learning or long-tail learning (under multi-class scenario). See related papers/libraries/resources here.

Currently (v0.1), IMBENS includes more than 15 ensemble imbalanced learning algorithms, from the classical SMOTEBoost (2003), RUSBoost (2010) to recent Self-paced Ensemble (2020), from resampling to cost-sensitive learning. More algorithms will be included in the future. We also provide detailed documentation and examples across various algorithms. See full list of implemented methods here.

  • Please leave a STAR if you like this project!
  • If you find any bugs or have any suggestions, please consider opening an issue or a PR.
  • We would greatly appreciate your contribution, and you will appear in the Contributors !

IMBENS is featured for:

  • 🍎 Unified, easy-to-use APIs, detailed documentation and examples.
  • 🍎 Capable for out-of-the-box multi-class imbalanced (long-tailed) learning.
  • 🍎 Optimized performance with parallelization when possible using joblib.
  • 🍎 Powerful, customizable, interactive training logging and visualizer.
  • 🍎 Full compatibility with other popular packages like scikit-learn and imbalanced-learn.

API Demo:

# Train an SPE classifier
from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
clf = SelfPacedEnsembleClassifier(random_state=42)
clf.fit(X_train, y_train)

# Predict with an SPE classifier
y_pred = clf.predict(X_test)

If you find IMBENS helpful in your work or research, we would greatly appreciate citations to the following paper:

@article{liu2021imbens,
  title={IMBENS: Ensemble Class-imbalanced Learning in Python},
  author={Liu, Zhining and Wei, Zhepei and Yu, Erxin and Huang, Qiang and Guo, Kai and Yu, Boyang and Cai, Zhaonian and Ye, Hangting and Cao, Wei and Bian, Jiang and Wei, Pengfei and Jiang, Jing and Chang, Yi},
  journal={arXiv preprint arXiv:2111.12776},
  year={2021}
}

Table of Contents

Installation

It is recommended to use pip for installation.
Please make sure the latest version is installed to avoid potential problems:

$ pip install imbalanced-ensemble            # normal install
$ pip install --upgrade imbalanced-ensemble  # update if needed

Or you can install imbalanced-ensemble by clone this repository:

$ git clone https://github.com/ZhiningLiu1998/imbalanced-ensemble.git
$ cd imbalanced-ensemble
$ pip install .

imbalanced-ensemble requires following dependencies:

Highlights

  • 🍎 Unified, easy-to-use API design.
    All ensemble learning methods implemented in IMBENS share a unified API design. Similar to sklearn, all methods have functions (e.g., fit(), predict(), predict_proba()) that allow users to deploy them with only a few lines of code.
  • 🍎 Extended functionalities, wider application scenarios.
    All methods in IMBENS are ready for multi-class imbalanced classification. We extend binary ensemble imbalanced learning methods to get them to work under the multi-class scenario. Additionally, for supported methods, we provide more training options like class-wise resampling control, balancing scheduler during the ensemble training process, etc.
  • 🍎 Detailed training log, quick intuitive visualization.
    We provide additional parameters (e.g., eval_datasets, eval_metrics, training_verbose) in fit() for users to control the information they want to monitor during the ensemble training. We also implement an EnsembleVisualizer to quickly visualize the ensemble estimator(s) for providing further information/conducting comparison. See an example here.
  • 🍎 Wide compatiblilty.
    IMBENS is designed to be compatible with scikit-learn (sklearn) and also other compatible projects like imbalanced-learn. Therefore, users can take advantage of various utilities from the sklearn community for data processing/cross-validation/hyper-parameter tuning, etc.

List of implemented methods

Currently (v0.1.3, 2021/06), 16 ensemble imbalanced learning methods were implemented:
(Click to jump to the document page)

Note: imbalanced-ensemble is still under development, please see API reference for the latest list.

5-min Quick Start with IMBENS

Here, we provide some quick guides to help you get started with IMBENS.
We strongly encourage users to check out the example gallery for more comprehensive usage examples, which demonstrate many advanced features of IMBENS.

A minimal working example

Taking self-paced ensemble [1] as an example, it only requires less than 10 lines of code to deploy it:

>>> from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> 
>>> X, y = make_classification(n_samples=1000, n_classes=3,
...                            n_informative=4, weights=[0.2, 0.3, 0.5],
...                            random_state=0)
>>> X_train, X_test, y_train, y_test = train_test_split(
...                            X, y, test_size=0.2, random_state=42)
>>> clf = SelfPacedEnsembleClassifier(random_state=0)
>>> clf.fit(X_train, y_train)
SelfPacedEnsembleClassifier(...)
>>> clf.predict(X_test)  
array([...])

Visualize ensemble classifiers

The imbalanced_ensemble.visualizer sub-module provide an ImbalancedEnsembleVisualizer. It can be used to visualize the ensemble estimator(s) for further information or comparison. Please refer to visualizer documentation and examples for more details.

Fit an ImbalancedEnsembleVisualizer

from imbalanced_ensemble.ensemble import SelfPacedEnsembleClassifier
from imbalanced_ensemble.ensemble import RUSBoostClassifier
from imbalanced_ensemble.ensemble import EasyEnsembleClassifier
from sklearn.tree import DecisionTreeClassifier

# Fit ensemble classifiers
init_kwargs = {'base_estimator': DecisionTreeClassifier()}
ensembles = {
    'spe': SelfPacedEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
    'rusboost': RUSBoostClassifier(**init_kwargs).fit(X_train, y_train),
    'easyens': EasyEnsembleClassifier(**init_kwargs).fit(X_train, y_train),
}

# Fit visualizer
from imbalanced_ensemble.visualizer import ImbalancedEnsembleVisualizer
visualizer = ImbalancedEnsembleVisualizer().fit(ensembles=ensembles)

Plot performance curves

fig, axes = visualizer.performance_lineplot()

Plot confusion matrices

fig, axes = visualizer.confusion_matrix_heatmap()

Customizing training log

All ensemble classifiers in IMBENS support customizable training logging. The training log is controlled by 3 parameters eval_datasets, eval_metrics, and training_verbose of the fit() method. Read more details in the fit documentation.

Enable auto training log

clf.fit(..., train_verbose=True)
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃                          ┃            Data: train             ┃
┃ #Estimators ┃    Class Distribution    ┃               Metric               ┃
┃             ┃                          ┃  acc    balanced_acc   weighted_f1 ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.838      0.877          0.839    ┃
┃      5      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.924      0.949          0.924    ┃
┃     10      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.954      0.970          0.954    ┃
┃     15      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.979      0.986          0.979    ┃
┃     20      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.990      0.993          0.990    ┃
┃     25      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.994      0.996          0.994    ┃
┃     30      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.988      0.992          0.988    ┃
┃     35      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.999      0.999          0.999    ┃
┃     40      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.995      0.997          0.995    ┃
┃     45      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.995      0.997          0.995    ┃
┃     50      ┃ {0: 150, 1: 150, 2: 150} ┃ 0.993      0.995          0.993    ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ {0: 150, 1: 150, 2: 150} ┃ 0.993      0.995          0.993    ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

Customize granularity and content of the training log

clf.fit(..., 
        train_verbose={
            'granularity': 10,
            'print_distribution': False,
            'print_metrics': True,
        })
Click to view example output
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃            Data: train             ┃
┃ #Estimators ┃               Metric               ┃
┃             ┃  acc    balanced_acc   weighted_f1 ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ 0.964      0.970          0.964    ┃
┃     10      ┃ 1.000      1.000          1.000    ┃
┃     20      ┃ 1.000      1.000          1.000    ┃
┃     30      ┃ 1.000      1.000          1.000    ┃
┃     40      ┃ 1.000      1.000          1.000    ┃
┃     50      ┃ 1.000      1.000          1.000    ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ 1.000      1.000          1.000    ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

Add evaluation dataset(s)

  clf.fit(..., 
          eval_datasets={
              'valid': (X_valid, y_valid)
          })
Click to view example output
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃            Data: train             ┃            Data: valid             ┃
┃ #Estimators ┃               Metric               ┃               Metric               ┃
┃             ┃  acc    balanced_acc   weighted_f1 ┃  acc    balanced_acc   weighted_f1 ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ 0.939      0.961          0.940    ┃ 0.935      0.933          0.936    ┃
┃     10      ┃ 1.000      1.000          1.000    ┃ 0.971      0.974          0.971    ┃
┃     20      ┃ 1.000      1.000          1.000    ┃ 0.982      0.981          0.982    ┃
┃     30      ┃ 1.000      1.000          1.000    ┃ 0.983      0.983          0.983    ┃
┃     40      ┃ 1.000      1.000          1.000    ┃ 0.983      0.982          0.983    ┃
┃     50      ┃ 1.000      1.000          1.000    ┃ 0.983      0.982          0.983    ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ 1.000      1.000          1.000    ┃ 0.983      0.982          0.983    ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┛

Customize evaluation metric(s)

from sklearn.metrics import accuracy_score, f1_score
clf.fit(..., 
        eval_metrics={
            'acc': (accuracy_score, {}),
            'weighted_f1': (f1_score, {'average':'weighted'}),
        })
Click to view example output
┏━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓
┃             ┃     Data: train      ┃     Data: valid      ┃
┃ #Estimators ┃        Metric        ┃        Metric        ┃
┃             ┃  acc    weighted_f1  ┃  acc    weighted_f1  ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━┫
┃      1      ┃ 0.942      0.961     ┃ 0.919      0.936     ┃
┃     10      ┃ 1.000      1.000     ┃ 0.976      0.976     ┃
┃     20      ┃ 1.000      1.000     ┃ 0.977      0.977     ┃
┃     30      ┃ 1.000      1.000     ┃ 0.981      0.980     ┃
┃     40      ┃ 1.000      1.000     ┃ 0.980      0.979     ┃
┃     50      ┃ 1.000      1.000     ┃ 0.981      0.980     ┃
┣━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━╋━━━━━━━━━━━━━━━━━━━━━━┫
┃    final    ┃ 1.000      1.000     ┃ 0.981      0.980     ┃
┗━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━┻━━━━━━━━━━━━━━━━━━━━━━┛

About imbalanced learning

Class-imbalance (also known as the long-tail problem) is the fact that the classes are not represented equally in a classification problem, which is quite common in practice. For instance, fraud detection, prediction of rare adverse drug reactions and prediction gene families. Failure to account for the class imbalance often causes inaccurate and decreased predictive performance of many classification algorithms. Imbalanced learning aims to tackle the class imbalance problem to learn an unbiased model from imbalanced data.

For more resources on imbalanced learning, please refer to awesome-imbalanced-learning.

Acknowledgements

Many samplers and utilities are adapted from imbalanced-learn, which is an amazing project!

References

# Reference
[1] Zhining Liu, Wei Cao, Zhifeng Gao, Jiang Bian, Hechang Chen, Yi Chang, and Tie-Yan Liu. 2019. Self-paced Ensemble for Highly Imbalanced Massive Data Classification. 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020, pp. 841-852.
[2] X.-Y. Liu, J. Wu, and Z.-H. Zhou, Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2009.
[3] Chen, Chao, Andy Liaw, and Leo Breiman. “Using random forest to learn imbalanced data.” University of California, Berkeley 110 (2004): 1-12.
[4] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, Rusboost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 1, pp. 185–197, 2010.
[5] Maclin, R., & Opitz, D. (1997). An empirical evaluation of bagging and boosting. AAAI/IAAI, 1997, 546-551.
[6] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, Smoteboost: Improving prediction of the minority class in boosting. in European conference on principles of data mining and knowledge discovery. Springer, 2003, pp. 107–119
[7] S. Wang and X. Yao, Diversity analysis on imbalanced data sets by using ensemble models. in 2009 IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 2009, pp. 324–331.
[8] Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999, June). AdaCost: misclassification cost-sensitive boosting. In Icml (Vol. 99, pp. 97-105).
[9] Shawe-Taylor, G. K. J., & Karakoulas, G. (1999). Optimizing classifiers for imbalanced training sets. Advances in neural information processing systems, 11(11), 253.
[10] Viola, P., & Jones, M. (2001). Fast and robust classification using asymmetric adaboost and a detector cascade. Advances in Neural Information Processing System, 14.
[11] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
[12] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
[13] Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18(17):1–5, 2017.

Related Projects

Check out Zhining's other open-source projects!


Self-paced Ensemble [ICDE]

GitHub stars

Meta-Sampler [NeurIPS]

GitHub stars

Imbalanced Learning [Awesome]

GitHub stars

Machine Learning [Awesome]

GitHub stars

Contributors

Thanks goes to these wonderful people (emoji key):


Zhining Liu

💻 🤔 🚧 🐛 📖

leaphan

🐛

hannanhtang

🐛

H.J.Ren

🐛

This project follows the all-contributors specification. Contributions of any kind welcome!

You might also like...
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Comments
  • Bug :AttributeError: can't set attribute

    Bug :AttributeError: can't set attribute

    hello ,when i use the code as follow,the will be some errors, EasyEnsembleClassifier was used

    from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import balanced_accuracy_score from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from imbalanced_ensemble.ensemble import EasyEnsembleClassifier from collections import Counter

    X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) print('Original dataset shape %s' % Counter(y))

    Original dataset shape Counter({{1: 900, 0: 100}})

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) bbc = EasyEnsembleClassifier(random_state=42) bbc.fit(X_train, y_train) EasyEnsembleClassifier(...) y_pred = bbc.predict(X_test) print(y_pred)

    Traceback (most recent call last): File "C:/Users/Administrator/PycharmProjects/pythonProject5/test-easy.py", line 16, in bbc.fit(X_train, y_train) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\utils_validation.py", line 602, in inner_f return f(**kwargs) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\ensemble\under_sampling\easy_ensemble.py", line 275, in fit return self._fit(X, y, File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\utils_validation.py", line 602, in inner_f return f(**kwargs) File "C:\Users\Administrator\PycharmProjects\pythonProject5\venv\lib\site-packages\imbalanced_ensemble\ensemble_bagging.py", line 359, in fit n_samples, self.n_features = X.shape AttributeError: can't set attribute

    bug 
    opened by leaphan 8
  • EasyEnsembleClassifier用不了了

    EasyEnsembleClassifier用不了了

    根据你的在这儿https://imbalanced-ensemble.readthedocs.io/en/latest/auto_examples/classification/plot_digits.html 的代码,将分类器改成EasyEnsembleClassifier可以复现这个问题,会出现: image AttributeError: can't set attribute这个问题。

    bug 
    opened by hannanhtang 7
  • ENH add early_termination control for boosting-based methods

    ENH add early_termination control for boosting-based methods

    The early termination in sklearn.ensemble.AdaBoostClassifier may be too strict under certain scenarios (only 1 base classifier is trained), which greatly hinders the performance of boosting-based ensemble imbalanced learning methods.

    It should make more sense to add a parameter that allows the user to decide whether to enable strict early termination.

    enhancement 
    opened by ZhiningLiu1998 2
  • [BUG] Bagging-based methods do not work with base clf that do not support sample_weight

    [BUG] Bagging-based methods do not work with base clf that do not support sample_weight

    Resampling + Bagging clf (e.g., OverBagging) raises error when used with base estimators that do not support sample_weight (e.g., sklearn.KNeighborsClassifier).

    opened by ZhiningLiu1998 2
Owner
Zhining Liu
M.Sc. student at Jilin University.
Zhining Liu
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
Toolss - Automatic installer of hacking tools (ONLY FOR TERMUKS!)

Tools Автоматический установщик хакерских утилит (ТОЛЬКО ДЛЯ ТЕРМУКС!) Оригиналь

14 Jan 05, 2023
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

🎉 第二版本 🎉 (现货趋势网格) 介绍 在第一版本的基础上 趋势判断,不在固定点位开单,选择更优的开仓点位 优势: 🎉 简单易上手 安全(不用将api_secret告诉他人) 如何启动 修改app目录下的authorization文件

幸福村的码农 250 Jan 07, 2023
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023