CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

Overview

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

This is a repository for the following paper:

  • Keisuke Okumura, Ryo Yonetani, Mai Nishimura, Asako Kanezaki, "CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces," AAMAS, 2022 [paper] [project page]

You need docker (≥v19) and docker-compose (≥v1.29) to implement this repo.

Demo

(generated by ./notebooks/gif.ipynb)

Getting Started

We explain the minimum structure. To reproduce the experiments, see here. The link also includes training data, benchmark instances, and trained models.

Step 1. Create Environment via Docker

  • locally build docker image
docker-compose build        # required time: around 30min~1h
  • run/enter image as a container
docker-compose up -d dev
docker-compose exec dev bash
  • ./.docker-compose.yaml also includes an example (dev-gpu) when NVIDIA Docker is available.
  • The image is based on pytorch/pytorch:1.8.1-cuda10.2-cudnn7-devel and installs CMake, OMPL, etc. Please check ./Dockerfile.
  • The initial setting mounts $PWD/../ctrm_data:/data to store generated demonstrations, models, and evaluation results. So, a new directory (ctrm_data) will be generated automatically next to the root directory.

Step 2. Play with CTRMs

We prepared the minimum example with Jupyter Lab. First, startup your Jupyter Lab:

jupyter lab --allow-root --ip=0.0.0.0

Then, access http://localhost:8888 via your browser and open ./notebooks/CTRM_demo.ipynb. The required token will appear at your terminal. You can see multi-agent path planning enhanced by CTRMs in an instance with 20-30 agents and a few obstacles.

In what follows, we explain how to generate new data, perform training, and evaluate the learned model.

Step 3. Data Generation

The following script generates MAPP demonstrations (instances and solutions).

cd /workspace/scripts
python create_data.py

You now have data in /data/demonstrations/xxxx-xx-xx_xx-xx-xx/ (in docker env), like the below.

The script uses hydra. You can create another data, e.g., with Conflict-based Search [1] (default: prioritized planning [2]).

python create_data.py planner=cbs

You can find details and explanations for all parameters with:

python create_data.py --help

Step 4. Model Training

python train.py datadir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx

The trained model will be saved in /data/models/yyyy-yy-yy_yy-yy-yy (in docker env).

Step 5. Evaluation

python eval.py \
insdir=/data/demonstrations/xxxx-xx-xx_xx-xx-xx/test \
roadmap=ctrm \
roadmap.pred_basename=/data/models/yyyy-yy-yy_yy-yy-yy/best

The result will be saved in /data/exp/zzzz-zz-zz_zz-zz-zz.

Probably, the planning in all instances will fail. To obtain successful results, we need more data and more training than the default parameters as presented here. Such examples are shown here (experimental settings).

Notes

  • Analysis of the experiments are available in /workspace/notebooks (as Jupyter Notebooks).
  • ./tests uses pytest. Note that it is not comprehensive, rather it was used for the early phase of development.

Documents

A document for the console library is available, which is made by Sphinx.

  • create docs
cd docs; make html
  • To rebuild docs, perform the following before the above.
sphinx-apidoc -e -f -o ./docs ./src

Known Issues

  • Do not set format_input.fov_encoder.map_size larger than 250. We are aware of the issue with pybind11; data may not be transferred correctly.
  • We originally developed this repo for both 2D and 3D problem instances. Hence, most parts of the code can be extended in 3D cases, but it is not fully supported.
  • The current implementation does not rely on FCL (collision checker) since we identified several false-negative detection. As a result, we modeled whole agents and obstacles as circles in 2D spaces to detect collisions easily. However, it is not so hard to adapt other shapes like boxes when you use FCL.

Licence

This software is released under the MIT License, see LICENCE.

Citation

# arXiv version
@article{okumura2022ctrm,
  title={CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces},
  author={Okumura, Keisuke and Yonetani, Ryo and Nishimura, Mai and Kanezaki, Asako},
  journal={arXiv preprint arXiv:2201.09467},
  year={2022}
}

Reference

  1. Sharon, G., Stern, R., Felner, A., & Sturtevant, N. R. (2015). Conflict-based search for optimal multi-agent pathfinding. Artificial Intelligence
  2. Silver, D. (2005). Cooperative pathfinding. Proc. AAAI Conf. on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-05)
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
Do Neural Networks for Segmentation Understand Insideness?

This is part of the code to reproduce the results of the paper Do Neural Networks for Segmentation Understand Insideness? [pdf] by K. Villalobos (*),

biolins 0 Mar 20, 2021
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

nsdf Representing SDFs of arbitrary meshes has been a bit tricky so far. Express

Jan Ivanecky 5 Feb 18, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022