Course material for the Multi-agents and computer graphics course

Overview

TC2008B

Course material for the Multi-agents and computer graphics course.

Setup instructions

  • Strongly recommend using a custom conda environment.
  • Install python 3.8 in the environment: conda install python=3.8 Using 3.8 for compatibility reasons. Maybe 3.9 or 3.10 are compatible with all the packages, but will have to check.
  • Installing mesa: pip install mesa
  • Installing flask to mount the service: pip install flask
  • By this moment, the environment will have all the packages needed for the project to run.

Instructions to run the local server and the Unity application

  • Run either the python web server: Server/tc2008B_server.py, or the flask server: Server/tc2008B_flask.py. Flask is considerably easier to setup and use, and I strongly recommend its use over python's http.server module. Additionally, IBM cloud example used flask.
  • To run the python web server:
python tc2008B_server.py
  • To run a flask app:
export FLASK_APP=tc_2008B_flash.py
flask run
  • You can change the name of the app you want to run by changing the environment variable FLASK_APP.

  • Alternatively, if you used the following code in your flask server:

if __name__=='__main__':
    app.run(host="localhost", port=8585, debug=True)

you can run it using:

python tc2008B_flask.py
  • To run a flask app on a different host or port:
flask run --host=0.0.0.0 --port=8585
  • Either of these servers is what will run on the cloud.
  • Once the server is running, launch the Unity scene TC2008B that is in the folder: IntegrationTest.
  • The scene has two game objects: AgentController and AgentControllerUpdate. I left both so that different functionality can be tested: AgentController works with the response of the python web server, while AgentControllerUpdate works with the reponse from the flask server.
  • I updated the AgentController.cs code, and introduced AgentControllerUpdate.cs. Each script parses data differently, depending on the response from either the python web server, or from the flask server. The AgentController.cs script parses text data, while AgentControllerUpdate.cs parses JSON data. I strongly recommend that we use JSON data.
  • The scripts are listening to port 8585 (http://localhost:8585). Double check that your server is launching on that port; specially if you are using a flask server.
  • If the Unity application is not running, or has import issues, I included the Unity package that has the scene Sergio Ruiz provided.

Instruction to run the cloud server and Unity application

Installing dependencies, and locally running the sample

# ...first add the Cloud Foundry Foundation public key and package repository to your system
wget -q -O - https://packages.cloudfoundry.org/debian/cli.cloudfoundry.org.key | sudo apt-key add -
echo "deb https://packages.cloudfoundry.org/debian stable main" | sudo tee /etc/apt/sources.list.d/cloudfoundry-cli.list
# ...then, update your local package index, then finally install the cf CLI
sudo apt update
sudo apt install cf8-cli
  • To get the sample app running:
git clone https://github.com/IBM-Cloud/get-started-python
cd get-started-python
  • To run locally:
pip install -r requirements.txt
python hello.py

To deply the sample to the cloud

  • All the requiered files for the sample app to run are inside the IBMCloud folder.
  • We first need a manifest.yml file. The one provided in the example repository contains the following:
applications:
 - name: GetStartedPython
   random-route: true
   memory: 128M
  • You can use the Cloud Foundry CLI to deploy apps. Choose your API endpoint:
cf api 
   

   

Replace the API-endpoint in the command with an API endpoint from the following list:

URL Region
https://api.ng.bluemix.net US South
https://api.eu-de.bluemix.net Germany
https://api.eu-gb.bluemix.net United Kingdom
https://api.au-syd.bluemix.net Sydney
  • Login to your IBM Cloud account:
cf login
  • From within the get-started-python directory push your app to IBM Cloud:
cf push
  • This process can take a while. All the dependencies are downloaded and installed, and the app in started.
  • After you push the application, in the cloud dashboard you can see a new cloud foundry app.
  • This can take a minute. If there is an error in the deployment process you can use the command cf logs --recent to troubleshoot.
  • When deployment completes you should see a message indicating that your app is running. View your app at the URL listed in the output of the push command. You can also issue the cf apps.
  • With the cf apps command you can see the route for the app.

To deploy a custom app to the cloud

  • I created an app within the cloud foundry in the ibm cloud by following the document Manual IBM Cloud - Python.pdf.
  • Created an additional folder inside the IBMCloud folder, named boids, that contains the required files.
  • In the manifest.yml I renamed the name to the one I used for the app in cloud foundry. From GetStartedPython to Boids.
  • Then, modified the ProcFile file as follows:
web: python tc2008B_flask.py
  • Modified the setup.py file, but I do not think it matters.
  • Then changed to the boids folder, and used:
cf push
  • Then, update the url for the service in Unity with the url for the service that cloud foundry assigns.

Notes

  • Using VSCode to develop everything.
  • Although not stated in the requirements, Git needs to be installed on the system.
  • I am running windows, and using the WSL. I ran the server code in WSL, and the Unity client in windows. My WSL machine runs Ubuntu 20.
  • Using Thunder Client extension as a replacement for postman to test the apis.
  • Pip does not allow us to search anymore.
  • As of 2021-10-17, the WWWForm method to post from Unity to the web service still works with Unity 20.20.3.4. However, the support apparently is going away soon.
  • Using flask because it is ideal for building smaller applications. Django could be used, but since it is much more robust, the additional utilities were not needed for this project.
  • The demo app push process went rather smoothly, but for the boids app it did not. It took too long, and ended up failing with a timeout error. I issued the command again.
  • Timeout again. Modified the manifest, and tried again.
  • After that, the app failed when it tried to start. Apparently, numpy was missing from the requirements.

TO DO

  • [ x ] Add the mesa code instead of the Boids code.
  • [ x ] Check synchronization, clients, maybe in the cloud, most likely in flask
  • Check cloud documentation or ask for a course? Instances, connections, etc.

Dependencies

Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
list all open dataset about ocr.

ocr-open-dataset list all open dataset about ocr. printed dataset year Born-Digital Images (Web and Email) 2011-2015 COCO-Text 2017 Text Extraction fr

hongbomin 95 Nov 24, 2022
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023
A tensorflow implementation of EAST text detector

EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text

2.9k Jan 02, 2023
Python bindings for JIGSAW: a Delaunay-based unstructured mesh generator.

JIGSAW: An unstructured mesh generator JIGSAW is an unstructured mesh generator and tessellation library; designed to generate high-quality triangulat

Darren Engwirda 26 Dec 13, 2022
📷 This repository is focused on having various feature implementation of OpenCV in Python.

📷 This repository is focused on having various feature implementation of OpenCV in Python. The aim is to have a minimal implementation of all OpenCV features together, under one roof.

Aditya Kumar Gupta 128 Dec 04, 2022
MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition Python 2.7 Python 3.6 MORAN is a network with rectification mechanism for

Canjie Luo 595 Dec 27, 2022
Random maze generator and solver

Maze Generator and Solver I wrote a maze generator that works with two commonly known algorithms: Depth First Search and Randomized Prims. Both of the

Daniel Pérez 10 Sep 23, 2022
Python library to extract tabular data from images and scanned PDFs

Overview ExtractTable - API to extract tabular data from images and scanned PDFs The motivation is to make it easy for developers to extract tabular d

Org. Account 165 Dec 31, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
A toolbox of scene text detection and recognition

FudanOCR This toolbox contains the implementations of the following papers: Scene Text Telescope: Text-Focused Scene Image Super-Resolution [Chen et a

FudanVIC Team 170 Dec 26, 2022
Visual Attention based OCR

Attention-OCR Authours: Qi Guo and Yuntian Deng Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to hei

Yuntian Deng 1.1k Jan 02, 2023
Isearch (OSINT) 🔎 Face recognition reverse image search on Instagram profile feed photos.

isearch is an OSINT tool on Instagram. Offers a face recognition reverse image search on Instagram profile feed photos.

Malek salem 20 Oct 25, 2022
Automatic Number Plate Recognition (ANPR) is a highly accurate system capable of reading vehicle number plates without human intervention

ANPR ANPR is therefore the underlying technology used to find a vehicle license/number plate and it, in turn, supplies this information to a next stag

Melih Emin Kılıçoğlu 1 Jan 09, 2022
原神风花节自动弹琴辅助

GenshinAutoPlayBalladsofBreeze 原神风花节自动弹琴辅助(已适配1920*1080分辨率) 本程序基于opencv图像识别技术,不存在任何封号。 因为正确率取决于你的cpu性能,10900k都不一定全对。 由于图像识别存在误差,根本无法确定出错时间。更不用说被检测到了。

晓轩 20 Oct 27, 2022
Automatically fishes for you while you are afk :)

Dank-memer-afk-script A simple and quick way to make easy money in Dank Memer! How to use Open a discord channel which has the Dank Memer bot enabled.

Pranav Doshi 9 Nov 11, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
a deep learning model for page layout analysis / segmentation.

OCR Segmentation a deep learning model for page layout analysis / segmentation. dependencies tensorflow1.8 python3 dataset: uw3-framed-lines-degraded-

99 Dec 12, 2022