Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

Overview

DominoSearch

This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

Instructions and other materials will be released soon.

Search:

git clone https://github.com/NM-sparsity/DominoSearch.git
cd DominoSearch/DominoSearch/search/script_resnet_ImageNet

We provide several search scripts for different sparse-ratio target, you can specify your own target and change the parameters accordingly. Note, you need to first specify your ImageNet dataset path

The searching phase could take 2-3 hours, then you will get searched schemes stored in a txt file, which will be needed as input for mixed-sparsity training.

Below is an example of output formate.

{'SparseConv0_3-64-(7, 7)': [16, 16], 'SparseConv1_64-64-(1, 1)': [16, 16], 'SparseConv2_64-64-(3, 3)': [4, 16], 'SparseConv3_64-256-(1, 1)': [8, 16], 'SparseConv4_64-256-(1, 1)': [8, 16], 'SparseConv5_256-64-(1, 1)': [8, 16], 'SparseConv6_64-64-(3, 3)': [4, 16], 'SparseConv7_64-256-(1, 1)': [8, 16], 'SparseConv8_256-64-(1, 1)': [8, 16], 'SparseConv9_64-64-(3, 3)': [4, 16], 'SparseConv10_64-256-(1, 1)': [8, 16], 'SparseConv11_256-128-(1, 1)': [8, 16], 'SparseConv12_128-128-(3, 3)': [2, 16], 'SparseConv13_128-512-(1, 1)': [8, 16], 'SparseConv14_256-512-(1, 1)': [4, 16], 'SparseConv15_512-128-(1, 1)': [8, 16], 'SparseConv16_128-128-(3, 3)': [4, 16], 'SparseConv17_128-512-(1, 1)': [8, 16], 'SparseConv18_512-128-(1, 1)': [8, 16], 'SparseConv19_128-128-(3, 3)': [4, 16], 'SparseConv20_128-512-(1, 1)': [8, 16], 'SparseConv21_512-128-(1, 1)': [8, 16], 'SparseConv22_128-128-(3, 3)': [2, 16], 'SparseConv23_128-512-(1, 1)': [8, 16], 'SparseConv24_512-256-(1, 1)': [4, 16], 'SparseConv25_256-256-(3, 3)': [2, 16], 'SparseConv26_256-1024-(1, 1)': [4, 16], 'SparseConv27_512-1024-(1, 1)': [4, 16], 'SparseConv28_1024-256-(1, 1)': [4, 16], 'SparseConv29_256-256-(3, 3)': [2, 16], 'SparseConv30_256-1024-(1, 1)': [4, 16], 'SparseConv31_1024-256-(1, 1)': [4, 16], 'SparseConv32_256-256-(3, 3)': [2, 16], 'SparseConv33_256-1024-(1, 1)': [4, 16], 'SparseConv34_1024-256-(1, 1)': [4, 16], 'SparseConv35_256-256-(3, 3)': [2, 16], 'SparseConv36_256-1024-(1, 1)': [4, 16], 'SparseConv37_1024-256-(1, 1)': [4, 16], 'SparseConv38_256-256-(3, 3)': [2, 16], 'SparseConv39_256-1024-(1, 1)': [4, 16], 'SparseConv40_1024-256-(1, 1)': [4, 16], 'SparseConv41_256-256-(3, 3)': [2, 16], 'SparseConv42_256-1024-(1, 1)': [4, 16], 'SparseConv43_1024-512-(1, 1)': [4, 16], 'SparseConv44_512-512-(3, 3)': [2, 16], 'SparseConv45_512-2048-(1, 1)': [4, 16], 'SparseConv46_1024-2048-(1, 1)': [2, 16], 'SparseConv47_2048-512-(1, 1)': [4, 16], 'SparseConv48_512-512-(3, 3)': [2, 16], 'SparseConv49_512-2048-(1, 1)': [4, 16], 'SparseConv50_2048-512-(1, 1)': [4, 16], 'SparseConv51_512-512-(3, 3)': [2, 16], 'SparseConv52_512-2048-(1, 1)': [4, 16], 'Linear0_2048-1000': [4, 16]}

Train:

After getting the layer-wise sparse schemes, we need to fine-tune with the schemes to recover the accuracy. The training code is based on NM-sparsity, where we made some changes to support flexible N:M schemes.

Below is an example of training layer-wise sparse resnet50 with 80% overall sparsity.

cd DominoSearch\DominoSearch\train\classification_sparsity_level\train_imagenet
 python -m torch.distributed.launch --nproc_per_node=8 ../train_imagenet.py --config ./configs/config_resnet50.yaml  --base_lr 0.01 --decay 0.0005 --epochs 120 --schemes_file ./schemes/resnet50_M16_0.80.txt --model_dir ./resnet50/resnet50_0.80_M16

Experiments

We provide the trained models of the experiments. Please check our paper for details and intepretations of the experiments.

ResNet50 experiments in section 4.1

Model Name TOP1 Accuracy Trained Model Searched schemes
resnet50 - 0.80 model size 76.7 google drive google drive
resnet50 - 0.875 model size 75.7 google drive google drive
resnet50 - 0.9375 model size 73.5 google drive google drive
resnet50 - 8x FLOPs 75.4 google drive google drive
resnet50- 16x FLOPs 73.4 google drive google drive

Ablation experiments of ResNet50 in section 5.3

Model Name TOP1 Accuracy Trained Model Train log
Ablation E3 76.1 google drive google drive
Ablation E4 76.4 google drive google drive
Ablation E6 76.6 google drive google drive
Ablation E7 75.6 google drive google drive

Citation

@inproceedings{
sun2021dominosearch,
title={DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks},
author={Wei Sun and Aojun Zhou and Sander Stuijk and Rob G. J. Wijnhoven and Andrew Nelson and Hongsheng Li and Henk Corporaal},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=IGrC6koW_g}
}
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022