Where-Got-Time - An NUS timetable generator which uses a genetic algorithm to optimise timetables to suit the needs of NUS students

Overview

Where Got Time(table)?

A timetable optimsier which uses an evolutionary algorithm to "breed" a timetable suited to your needs.



Try it out here!

Inspiration

Planning the best fit timetable to suit our needs can be an absolute nightmare. Different sets of modules can result in a seemingly limitless combinations of timetable. Comparing and choosing the best timetable can take hours or even days. The struggle is real

Having chanced upon an article on genetic algorithm, we thought that this would be the best approach to tackling an optimization problem involving timetabling/scheduling. This project aims to provide the most optimized timetable given a set of pre-defined constraints.

What It Does

Users can input the following:

  • Modules codes for the particular semester
  • Adjustable start and end time
  • Select free days
  • Maximize lunch timings
  • Determine minimum hours of break between classes

Based on user inputs, the most optimized timetable is generated.





Why It Works

A Genetic Algorithm mimics the process of natural selection and evolution by combining the "elite" timetables to form the "next generation" of timetables.

The evolutionary process:

  1. Extracting, cleaning and generating our own data structure from NUSMods API
  2. Initialise the first generation which includes a population of timetables
  3. Grading each timetable with a fitness score
  4. Cross-over fittest "parents" to generate 2 "child" timetables with mutations
  5. Assign these timetables to the next generation
  6. Repeat this process until the fitness score across a generation converges
  7. If the soft and hard constraints were not met after reaching the generation limit, the most optimised timetable is returned to the user

How We Built It

Our main algorithm was written with Python. It utilizes NUSMods API to fetch the relevant module data. Some filtering and cleaning up of the data grants us a workable data structure. Implementation of the genetic algorithm returns a link that is sent to the web page which generates an image for the user.

Firstly, we generate a population of timetables. Using a scoring algorithm, we rate the fitness of each timetable. Timetables with a better fitness score gets to produce the next generation of timetables through cross-overs and mutation.

We repeat this process until the average fitness score of the entire generation converges to within a tolerance range. The fittest timetable from the final generation is returned to the user.

Challenges We Ran Into

Managing large data structures comes with confusing errors that are hard to pinpoint. NUS offers more than 6000 modules, some classes are fixed while others are variable. This results in multiple varying data structures for different modules. As such, our code needs to be robust enough to handle the unique data structures. Integration of front and backend code was much harder than expected.

Accomplishments We're Proud Of

We are proud to have come up with a minimum viable product.

What We Learned

As this is our first group project, we learnt how to work on Git Flow, how to push and pull information via Git and version control. One of us even deleted a whole file and had to rewrite from scratch We also learnt how to approach optimization problems and how to use the NUSMods API for parsing data into our program.

What's Next For Where Got Time(table)?

Improve the UI/UX of the landing page to facilitate better user experience. Allow more user constraints such as "Minimal Time Spent in School". We will further fine-tune the program which could possibly be used as an extension for the official NUSMods. A possible feature that can be added includes a GIF of the user's timetable evolving across generations from start to finish.

Try It Out

Where Got Time(table)?

Credits/Reference

Using Genetic Algorithm to Schedule Timetables

Owner
Nicholas Lee
Nicholas Lee
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022