PyTorch implementation of CloudWalk's recent work DenseBody

Overview

densebody_pytorch

PyTorch implementation of CloudWalk's recent paper DenseBody.

Note: For most recent updates, please check out the dev branch.

Update on 20190613 A toy dataset has been released to facilitate the reproduction of this project. checkout PREPS.md for details.

Update on 20190826 A pre-trained model (Encoder/Decoder) has been released to facilitate the reproduction of this project.

paper teaser

Reproduction results

Here is the reproduction result (left: input image; middle: ground truth UV position map; right: estimated UV position map)

Update Notes

  • SMPL official UV map is now supported! Please checkout PREPS.md for details.
  • Code reformating complete! Please refer to data_utils/UV_map_generator.py for more details.
  • Thanks Raj Advani for providing new hand crafted UV maps!

Training Guidelines

Please follow the instructions PREPS.md to prepare your training dataset and UV maps. Then run train.sh or nohup_train.sh to begin training.

Customizations

To train with your own UV map, checkout UV_MAPS.md for detailed instructions.

To explore different network architectures, checkout NETWORKS.md for detailed instructions.

TODO List

  • Creating ground truth UV position maps for Human36m dataset.

    • 20190329 Finish UV data processing.
    • 20190331 Align SMPL mesh with input image.
    • 20190404 Data washing: Image resize to 256*256 and 2D annotation compensation.
    • 20190411 Generate and save UV position map.
      • radvani Hand parsed new 3D UV data
      • Validity checked with minor artifacts (see results below)
      • Making UV_map generation module a separate class.
    • 20190413 Prepare ground truth UV maps for washed dataset.
    • 20190417 SMPL official UV map supported!
    • 20190613 A testing toy dataset has been released!
  • Prepare baseline model training

    • 20190414 Network design, configs, trainer and dataloader
    • 20190414 Baseline complete with first-hand results. Something issue still needs to be addressed.
    • 20190420 Testing with different UV maps.

Authors

Lingbo Yang(Lotayou): The owner and maintainer of this repo.

Raj Advani(radvani): Provide several hand-crafted UV maps and many constructive feedbacks.

Citation

Please consider citing the following paper if you find this project useful.

DenseBody: Directly Regressing Dense 3D Human Pose and Shape From a Single Color Image

Acknowledgements

The network training part is inspired by BicycleGAN

Owner
Lingbo Yang
Math B.S. at PKU, currently pursuing Ph. D. at IDM VCL Love it when 3D meets 2D!
Lingbo Yang
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
mmdetection version of TinyBenchmark.

introduction This project is an mmdetection version of TinyBenchmark. TODO list: add TinyPerson dataset and evaluation add crop and merge for image du

34 Aug 27, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022