CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

Overview

TUCH

This repo is part of our project: On Self-Contact and Human Pose.
[Project Page] [Paper] [MPI Project Page]

Teaser SMPLify-XMC

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use the TUCH data and software, (the "Data & Software"), including 3D meshes, images, videos, textures, software, scripts, and animations. By downloading and/or using the Data & Software (including downloading, cloning, installing, and any other use of the corresponding github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Data & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Description and Demo

TUCH is a network that regresses human pose and shape, while handling self-contact. The network has the same design as SPIN, but uses new loss terms, that encourage self-contact and resolve intersections.

TUCH result
TUCH fits for two poses with self-contact.

Installation

1) Clone this repo

git clone [email protected]:muelea/tuch.git
cd tuch

32) Create python virtual environment and install requirements

mkdir .venv
python3.6 -m venv .venv/tuch
source .venv/tuch/bin/activate
pip install -r requirements.txt --no-cache-dir

The torchgeometry package uses (1 - bool tensor) statement, which is not supported. Since we try to invert a mask, we can exchange lines 301 - 304 in .venv/tuch/lib/python3.6/site-packages/torchgeometry/core/conversions.py,

FROM: 
    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * (1 - mask_d0_d1)
    mask_c2 = (1 - mask_d2) * mask_d0_nd1
    mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
TO:
    mask_c0 = mask_d2 * mask_d0_d1
    mask_c1 = mask_d2 * (~mask_d0_d1)
    mask_c2 = (~mask_d2) * mask_d0_nd1
    mask_c3 = (~mask_d2) * (~mask_d0_nd1)

3) Download the SMPL body model

Get them SMPL body model from https://smpl.is.tue.mpg.de and save it under SMPL_DIR. ln -s SMPL_DIR data/models/smpl

4) Download SPIN and TUCH model

Downlaod the SPIN and TUCH model and save it in data/

chmod 700 scripts/fetch_data.sh
./scripts/fetch_data.sh

5) Download essentials (necessary to run training code and smplify-dc demo; not necessary for the tuch demo)

Download essentials from here and unpack to METADATA_DIR. Then create symlinks between the essentials and this repo:

ln -s $METADATA_DIR/tuch-essentials data/essentials

6) Download the MTP and DSC datasets (necessary to run training code and smplify-dc demo; not necessary for the tuch demo)

To run TUCH training, please download:

For more information on how to prepare the data read me.

TUCH demo

python demo_tuch.py --checkpoint=data/tuch_model_checkpoint.pt  \
--img data/example_input/img_032.jpg --openpose data/example_input/img_032_keypoints.json \
--outdir data/example_output/demo_tuch

This is the link to the demo image.

SMPLify-DC demo

You can use the following command to run SMPLify-DC on our DSC data, after pre-processing it. See readme for instructions. The output are the initial SPIN estimate (columns 2 and 3) and the SMPLify-DC optimized result (column 4 and 5).

python demo_smplify_dc.py --name smplify_dc --log_dir out/demo_smplify_dc --ds_names dsc_df \
--num_smplify_iters 100

TUCH Training

To select the training data, you can use the --ds_names and --ds_composition flags. ds_names are the short names of each dataset, ds_composition their share per batch. --run_smplify uses DSC annotations when available, otherwise it runs SMPLify-DC without L_D term. If you memory is not sufficient, you can try changing the batch size via the --batch_size flag.

Run TUCH training code:

python train.py --name=tuch --log_dir=out --pretrained_checkpoint=data/spin_model_checkpoint.pt \
  --ds_names dsc mtp --ds_composition 0.5 0.5 \
  --run_smplify --num_smplify_iters=10

For a quick sanity check (no optimization and contact losses) you can finetune on MTP data only without pushing and pulling terms. For this, use mtp data only and set contact_loss_weight=0.0, and remove the optimization flag:

python train.py --name=tuch_mtp_nolplc --log_dir=out/ --pretrained_checkpoint=data/spin_model_checkpoint.pt \
  --ds_names mtp --ds_composition 1.0 \
  --contact_loss_weight=0.0 

To train on different data distributions, pass the dsc dataset names to --ds_names and their share per batch in the same order to --ds_composition. For example,
--ds_names dsc mtp --ds_composition 0.5 0.5 uses 50 % dsc and 50% mtp per batch and
--ds_names dsc mtp --ds_composition 0.3 0.7 uses 30 % dsc and 70% mtp per batch.

TUCH Evaluation

python eval.py --checkpoint=data/tuch_model_checkpoint.pt --dataset=mpi-inf-3dhp
python eval.py --checkpoint=data/tuch_model_checkpoint.pt --dataset=3dpw

EFT + Contact Fitting for DSC data

Training with in-the-loop optimization is slow. You can do Exemplar FineTuning (EFT) with Contact. For this, first process the DSC datasets. Then run:

python fit_eft.py --name tucheft --dsname dsc_lsp
python fit_eft.py --name tucheft --dsname dsc_lspet
python fit_eft.py --name tucheft --dsname dsc_df

Afterwards, you can use the eft datasets similar to the DSC data, just add '_eft' to the dataset name: --ds_names dsc_eft mtp --ds_composition 0.5 0.5 uses 50 % dsc eft and 50% mtp per batch. --ds_names dsc_lsp_eft mtp --ds_composition 0.5 0.5 uses 50 % dsc lsp eft and 50% mtp per batch.

Citation

@inproceedings{Mueller:CVPR:2021,
  title = {On Self-Contact and Human Pose},
  author = {M{\"u}ller, Lea and Osman, Ahmed A. A. and Tang, Siyu and Huang, Chun-Hao P. and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recogßnition (CVPR)},
  month = jun,
  year = {2021},
  doi = {},
  month_numeric = {6}
}

Acknowledgement

We thank Nikos Kolotouros and Georgios Pavlakos for publishing the SPIN code: https://github.com/nkolot/SPIN. This has allowed us to build our code on top of it and continue to use important features, such as the prior or optimization. Again, special thanks to Vassilis Choutas for his implementation of the generalized winding numbers and the measurements code. We also thank our data capture and admin team for their help with the extensive data collection on Mechanical Turk and in the Capture Hall. Many thanks to all subjects who contributed to this dataset in the scanner and on the Internet. Thanks to all PS members who proofread the script and did not understand it and the reviewers, who helped improving during the rebuttal. Lea Mueller and Ahmed A. A. Osman thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting them. We thank the wonderful PS department for their questions and support.

Contact

For questions, please contact [email protected]

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Lea Müller
PhD student in the Perceiving Systems Department at the Max Planck Institute for Intelligent Systems in Tübingen, Germany.
Lea Müller
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021