Short and long time series classification using convolutional neural networks

Overview

time-series-classification

Short and long time series classification via convolutional neural networks

In this project, we present a novel framework for time series classification, which is based on Gramian Angular Summation/Difference Fields and Markov Transition Fields (GAF-MTF), a recently published image feature extraction method. A convolutional neural network (CNN) was employed as the classifier. This framework enables the use of CNN to learn high-level features and classify time series. Its performance was evaluated on 16 standard datasets. Experiment results show that our framework outperforms or achieves the same level at least with the GAF-MTF+Tiled CNN framework on 14 of the 16 datasets. And it obtained competitive performance compared with other 8 representive approaches. Furthermore, we compared the performance of GAF-MTF feature with other 5 image features on a large-scale cough dataset. Results indicates that the GAF-MTF feature is not suitable for large-scale cough datasets while its competitive performance on the standard datasets.

Image features extraction

Short time series

Image features for short time series:

  • GASF

- GADF

- MTF

Large-scale cough dataset

Image features for cough dataset:

  • Comparision of the six image features:

CNN

  • Framework for short time series classification:

- AlexNet/CaffeNet

Results

  • short time series classification:

- long time series classificaiton:

Appendix

Dataset information:

Software Links:

This project is partly motivated by @Zhiguang Wang, who is the author of "Imaging Time-Series to Improve Classification and Imputation". He provided me the source code to extract GASF-GADF-MTF features and pointed out that "The tiled CNN is not the best one and the TICA pre-training stage seems unnecessary". His advice helped us save a great deal of time. Thanks for his kindness and if you use this repository for GAF/MTF feature extraction, please cite the work in your publication:

@inproceedings{Wang:2015:ITI:2832747.2832798,
 author = {Wang, Zhiguang and Oates, Tim},
 title = {Imaging Time-series to Improve Classification and Imputation},
 booktitle = {Proceedings of the 24th International Conference on Artificial Intelligence},
 series = {IJCAI'15},
 year = {2015},
 isbn = {978-1-57735-738-4},
 location = {Buenos Aires, Argentina},
 pages = {3939--3945},
 numpages = {7},
 url = {http://dl.acm.org/citation.cfm?id=2832747.2832798},
 acmid = {2832798},
 publisher = {AAAI Press},
}

NOTE: The cough dataset used in this work can not be accessed now for some privacy issues!

Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022