Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Overview

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs

This repository is the implementation of SELAR.

Dasol Hwang* , Jinyoung Park* , Sunyoung Kwon, Kyung-min Kim, Jung-Woo Ha, Hyunwoo J. Kim, Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs, In Advanced in Neural Information Processing Systems (NeurIPS 2020).

Data Preprocessing

We used datasets from KGNN-LS and RippleNet for link prediction. Download meta-paths label (meta_labels/) from this link.

  • data/music/

    • ratings_final.npy : preprocessed rating file released by KGNN-LS;
    • kg_final.npy : knowledge graph file;
      • meta_labels/
        • pos_meta{}_{}.pickle : meta-path positive label for auxiliary task
        • neg_meta{}_{}.pickle : meta-path negative label for auxiliary task
  • data/book/

    • ratings_final.npy : preprocessed rating file released by RippleNet;
    • kg_final.npy : knowledge graph file;
      • meta_labels/
        • pos_meta{}_{}.pickle : meta-path positive label for auxiliary task
        • neg_meta{}_{}.pickle : meta-path negative label for auxiliary task

Required packages

A list of dependencies will need to be installed in order to run the code. We provide the dependency yaml file (env.yml)

$ conda env create -f env.yml

Running the code

# check optional arguments [-h]
$ python main_music.py
$ python main_book.py

Overview of the results of link prediction

Last-FM (Music)

Base GNNs Vanilla w/o MP w/ MP SELAR SELAR+Hint
GCN 0.7963 0.7899 0.8235 0.8296 0.8121
GAT 0.8115 0.8115 0.8263 0.8294 0.8302
GIN 0.8199 0.8217 0.8242 0.8361 0.8350
SGC 0.7703 0.7766 0.7718 0.7827 0.7975
GTN 0.7836 0.7744 0.7865 0.7988 0.8067

Book-Crossing (Book)

Base GNNs Vanilla w/o MP w/ MP SELAR SELAR+Hint
GCN 0.7039 0.7031 0.7110 0.7182 0.7208
GAT 0.6891 0.6968 0.7075 0.7345 0.7360
GIN 0.6979 0.7210 0.7338 0.7526 0.7513
SGC 0.6860 0.6808 0.6792 0.6902 0.6926
GTN 0.6732 0.6758 0.6724 0.6858 0.6850

Citation

@inproceedings{NEURIPS2020_74de5f91,
 author = {Hwang, Dasol and Park, Jinyoung and Kwon, Sunyoung and Kim, KyungMin and Ha, Jung-Woo and Kim, Hyunwoo J},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {10294--10305},
 publisher = {Curran Associates, Inc.},
 title = {Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs},
 url = {https://proceedings.neurips.cc/paper/2020/file/74de5f915765ea59816e770a8e686f38-Paper.pdf},
 volume = {33},
 year = {2020}
}

License

Copyright (c) 2020-present NAVER Corp. and Korea University 
Owner
MLV Lab (Machine Learning and Vision Lab at Korea University)
MLV Lab (Machine Learning and Vision Lab at Korea University)
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Diabet Feature Engineering - Predict whether people have diabetes when their characteristics are specified

Şebnem 6 Jan 18, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022