Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Overview

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

This paper has been accpeted by Conference on Computer Vision and Pattern Recognition (CVPR) 2019.

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

by Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell and Kilian Q. Weinberger

Figure

Citation

@inproceedings{wang2019pseudo,
  title={Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving},
  author={Wang, Yan and Chao, Wei-Lun and Garg, Divyansh and Hariharan, Bharath and Campbell, Mark and Weinberger, Kilian},
  booktitle={CVPR},
  year={2019}
}

Update

  • 2nd July 2020: Add a jupyter script to visualize point cloud. It is in ./visualization folder.
  • 29th July 2019: submission.py will save the disparity to the numpy file, not png file. And fix the generate_lidar.py.
  • I have modifed the official avod a little bit. Now you can directly train and test pseudo-lidar with avod. Please check the code https://github.com/mileyan/avod_pl.

Contents

Introduction

3D object detection is an essential task in autonomous driving. Recent techniques excel with highly accurate detection rates, provided the 3D input data is obtained from precise but expensive LiDAR technology. Approaches based on cheaper monocular or stereo imagery data have, until now, resulted in drastically lower accuracies --- a gap that is commonly attributed to poor image-based depth estimation. However, in this paper we argue that data representation (rather than its quality) accounts for the majority of the difference. Taking the inner workings of convolutional neural networks into consideration, we propose to convert image-based depth maps to pseudo-LiDAR representations --- essentially mimicking LiDAR signal. With this representation we can apply different existing LiDAR-based detection algorithms. On the popular KITTI benchmark, our approach achieves impressive improvements over the existing state-of-the-art in image-based performance --- raising the detection accuracy of objects within 30m range from the previous state-of-the-art of 22% to an unprecedented 74%. At the time of submission our algorithm holds the highest entry on the KITTI 3D object detection leaderboard for stereo image based approaches.

Usage

1. Overview

We provide the guidance and codes to train stereo depth estimator and 3D object detector using the KITTI object detection benchmark. We also provide our pre-trained models.

2. Stereo depth estimation models

We provide our pretrained PSMNet model using the Scene Flow dataset and the 3,712 training images of the KITTI detection benchmark.

We also directly provide the pseudo-LiDAR point clouds and the ground planes of training and testing images estimated by this pre-trained model.

We also provide codes to train your own stereo depth estimator and prepare the point clouds and gound planes. If you want to use our pseudo-LiDAR data for 3D object detection, you may skip the following contents and directly move on to object detection models.

2.1 Dependencies

  • Python 3.5+
  • numpy, scikit-learn, scipy
  • KITTI 3D object detection dataset

2.2 Download the dataset

You need to download the KITTI dataset from here, including left and right color images, Velodyne point clouds, camera calibration matrices, and training labels. You also need to download the image set files from here. Then you need to organize the data in the following way.

KITTI/object/
    
    train.txt
    val.txt
    test.txt 
    
    training/
        calib/
        image_2/ #left image
        image_3/ #right image
        label_2/
        velodyne/ 

    testing/
        calib/
        image_2/
        image_3/
        velodyne/

The Velodyne point clouds (by LiDAR) are used ONLY as the ground truths to train a stereo depth estimator (e.g., PSMNet).

2.3 Generate ground-truth image disparities

Use the script./preprocessing/generate_disp.py to process all velodyne files appeared in train.txt. This is our training ground truth. Or you can directly download them from disparity. Name this folder as disparity and put it inside the training folder.

python generate_disp.py --data_path ./KITTI/object/training/ --split_file ./KITTI/object/train.txt 

2.4. Train the stereo model

You can train any stereo disparity model as you want. Here we give an example to train the PSMNet. The modified code is saved in the subfolder psmnet. Make sure you follow the README inside this folder to install the correct python and library. I strongly suggest using conda env to organize the python environments since we will use Python with different versions. Download the psmnet model pretrained on Sceneflow dataset from here.

# train psmnet with 4 TITAN X GPUs.
python ./psmnet/finetune_3d.py --maxdisp 192 \
     --model stackhourglass \
     --datapath ./KITTI/object/training/ \
     --split_file ./KITTI/object/train.txt \
     --epochs 300 \
     --lr_scale 50 \
     --loadmodel ./pretrained_sceneflow.tar \
     --savemodel ./psmnet/kitti_3d/  --btrain 12

2.5 Predict the point clouds

Predict the disparities.
# training
python ./psmnet/submission.py \
    --loadmodel ./psmnet/kitti_3d/finetune_300.tar \
    --datapath ./KITTI/object/training/ \
    --save_path ./KITTI/object/training/predict_disparity
# testing
python ./psmnet/submission.py \
    --loadmodel ./psmnet/kitti_3d/finetune_300.tar \
    --datapath ./KITTI/object/testing/ \
    --save_path ./KITTI/object/testing/predict_disparity
Convert the disparities to point clouds.
# training
python ./preprocessing/generate_lidar.py  \
    --calib_dir ./KITTI/object/training/calib/ \
    --save_dir ./KITTI/object/training/pseudo-lidar_velodyne/ \
    --disparity_dir ./KITTI/object/training/predict_disparity \
    --max_high 1
# testing
python ./preprocessing/generate_lidar.py  \
    --calib_dir ./KITTI/object/testing/calib/ \
    --save_dir ./KITTI/object/testing/pseudo-lidar_velodyne/ \
    --disparity_dir ./KITTI/object/testing/predict_disparity \
    --max_high 1

If you want to generate point cloud from depth map (like DORN), you can add --is_depth in the command.

2.6 Generate ground plane

If you want to train an AVOD model for 3D object detection, you need to generate ground planes from pseudo-lidar point clouds.

#training
python ./preprocessing/kitti_process_RANSAC.py \
    --calib ./KITTI/object/training/calib/ \
    --lidar_dir  ./KITTI/object/training/pseudo-lidar_velodyne/ \
    --planes_dir /KITTI/object/training/pseudo-lidar_planes/
#testing
python ./preprocessing/kitti_process_RANSAC.py \
    --calib ./KITTI/object/testing/calib/ \
    --lidar_dir  ./KITTI/object/testing/pseudo-lidar_velodyne/ \
    --planes_dir /KITTI/object/testing/pseudo-lidar_planes/

3. Object Detection models

AVOD model

Download the code from https://github.com/kujason/avod and install the Python dependencies.

Follow their README to prepare the data and then replace (1) files in velodyne with those in pseudo-lidar_velodyne and (2) files in planes with those in pseudo-lidar_planes. Note that you should still keep the folder names as velodyne and planes.

Follow their README to train the pyramid_cars_with_aug_example model. You can also download our pretrained model and directly evaluate on it. But if you want to submit your result to the leaderboard, you need to train it on trainval.txt.

Frustum-PointNets model

Download the code from https://github.com/charlesq34/frustum-pointnets and install the Python dependencies.

Follow their README to prepare the data and then replace files in velodyne with those in pseudo-lidar_velodyne. Note that you should still keep the folder name as velodyne.

Follow their README to train the v1 model. You can also download our pretrained model and directly evaluate on it.

Results

The main results on the validation dataset of our pseudo-LiDAR method. Figure

You can download the avod validation results from HERE.

Contact

If you have any question, please feel free to email us.

Yan Wang ([email protected]), Harry Chao([email protected]), Div Garg([email protected])

GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection, built on SECOND.

3D-CVF This is the official implementation of 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object

YecheolKim 97 Dec 20, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023