This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

Overview

Lagrangian Manifold Monte Carlo on Monge Patches

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AISTATS and is provided as-is.

Requirements :

  1. The code has been tested on Julia version 1.6.3, but is likely to work on all recent versions.

  2. The code relies on few packages that can be installed in Julia REPL using

    'add SpecialFunctions, Distributions, LinearAlgebra, Plots, StatsPlots, AdvancedHMC, MCMCDiagnostics, Random, StatsBase, DelimitedFiles, QuadGK

Using the code :

  1. Type 'include("EmbeddedLMC.jl")' to install the module EmbeddedLMC and include all required functionalitites

  2. After that type 'using .EmbeddedLMC'

  3. The main algorithm is provided in LMCea.jl as the function LMCea() that takes 8 input arguments:

    • 1st argument is the target distribution
    • 2nd argument is the initial value of the mcmc chain
    • 3rd argument is the sample-size of the chain
    • 4th argument is the step-size of the numerical integrator
    • 5th argument is the number of leapfrog steps
    • 6th argument should be '0' (experimental functionality for step-size adaptation)
    • 7th argument is the value of \alpha
    • 8th argument is a given initial velocity vector (for examples); if it is not given then the velocity vector will be sampled from a multivariate Gaussian
  4. There are 7 probabilistic models which can be used. They are

    • "bansh.jl" The banana-shaped probability distribution from Lan et. al. 2015 (Markov Chain Monte Carlo from Lagrangian Dynamics)
    • "rosenbrock.jl" Another banana-shaped distribution obtained from the rosenbrock function
    • "squiggle.jl" the same probabilistic model from https://chi-feng.github.io/mcmc-demo/
    • "funnel.jl" The classic funnel distribution from Radford Neal
    • "priorSparse.jl" Generalized Gaussian distribution
    • "logreg2.jl" binary regression with the logistic link function
    • "ring.jl" A probabilistic distribution where the typical set has a form of a ring on R^2
  5. Files example-funnel.jl, example-logreg.jl and example-squiggle provide examples on how to use the code

Owner
Marcelo Hartmann
I am an applied statistician with interest in Bayesian methods, Gaussian process models, machine learning and quantitative ecology - Huge fan of Starcraft 2
Marcelo Hartmann
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022
A Topic Modeling toolbox

Topik A Topic Modeling toolbox. Introduction The aim of topik is to provide a full suite and high-level interface for anyone interested in applying to

Anaconda, Inc. (formerly Continuum Analytics, Inc.) 93 Dec 01, 2022
πŸ“ Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version δΈ­ζ–‡η‰ˆζœ¬] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021