๐Ÿš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Overview

Creating an End-to-End ML Application w/ PyTorch

๐Ÿš€ This project was created using the Made With ML boilerplate template. Check it out to start creating your own ML applications.

Overview

  • Why do we need to build end-to-end applications?
    • By building e2e applications, you ensure that your code is organized, tested, testable / interactive and easy to scale-up / assimilate with larger pipelines.
    • If you're someone in industry and are looking to showcase your work to future employers, it's no longer enough to just have code on Jupyter notebooks. ML is just another tool and you need to show that you can use it in conjunction with all the other software engineering disciplines (frontend, backend, devops, etc.). The perfect way to do this is to create end-to-end applications that utilize all these different facets.
  • What are the components of an end-to-end ML application?
    1. Basic experimentation in Jupyter notebooks.
      • We aren't going to completely dismiss notebooks because they're still great tool to iterate quickly. Check out the notebook for our task here โ†’ notebook
    2. Moving our code from notebooks to organized scripts.
      • Once we did some basic development (on downsized datasets), we want to move our code to scripts to reduce technical debt. We'll create functions and classes for different parts of the pipeline (data, model, train, etc.) so we can easily make them robust for different circumstances.
      • We used our own boilerplate to organize our code before moving any of the code from our notebook.
    3. Proper logging and testing for you code.
      • Log key events (preprocessing, training performance, etc.) using the built-in logging library. Also use logging to see new inputs and outputs during prediction to catch issues, etc.
      • You also need to properly test your code. You will add and update your functions and their tests over time but it's important to at least start testing crucial pieces of your code from the beginning. These typically include sanity checks with preprocessing and modeling functions to catch issues early. There are many options for testing Python code but we'll use pytest here.
    4. Experiment tracking.
      • We use Weights and Biases (WandB), where you can easily track all the metrics of your experiment, config files, performance details, etc. for free. Check out the Dashboards page for an overview and tutorials.
      • When you're developing your models, start with simple approaches first and then slowly add complexity. You should clearly document (README, articles and WandB reports) and save your progression from simple to more complex models so your audience can see the improvements. The ability to write well and document your thinking process is a core skill to have in research and industry.
      • WandB also has free tools for hyperparameter tuning (Sweeps) and for data/pipeline/model management (Artifacts).
    5. Robust prediction pipelines.
      • When you actually deploy an ML application for the real world to use, we don't just look at the softmax scores.
      • Before even doing any forward pass, we need to analyze the input and deem if it's within the manifold of the training data. If it's something new (or adversarial) we shouldn't send it down the ML pipeline because the results cannot be trusted.
      • During processes like proprocessing, we need to constantly observe what the model received. For example, if the input has a bunch of unknown tokens than we need to flag the prediction because it may not be reliable.
      • After the forward pass we need to do tests on the model's output as well. If the predicted class has a mediocre test set performance, then we need the class probability to be above some critical threshold. Similarly we can relax the threshold for classes where we do exceptionally well.
    6. Wrap your model as an API.
      • Now we start to modularize larger operations (single/batch predict, get experiment details, etc.) so others can use our application without having to execute granular code. There are many options for this like Flask, Django, FastAPI, etc. but we'll use FastAPI for the ease and performance boost.
      • We can also use a Dockerfile to create a Docker image that runs our API. This is a great way to package our entire application to scale it (horizontally and vertically) depending on requirements and usage.
    7. Create an interactive frontend for your application.
      • The best way to showcase your work is to let others easily play with it. We'll be using Streamlit to very quickly create an interactive medium for our application and use Heroku to serve it (1000 hours of usage per month).
      • This is also a great skill to have because in industry you'll need to create this to show key stakeholders and great to have in documentation as well.

Set up

virtualenv -p python3.6 venv
source venv/bin/activate
pip install -r requirements.txt
pip install torch==1.4.0

Download embeddings

python text_classification/utils.py

Training

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Endpoints

uvicorn text_classification.app:app --host 0.0.0.0 --port 5000 --reload
GOTO: http://localhost:5000/docs

Prediction

Scripts

python text_classification/predict.py --text 'The Canadian government officials proposed the new federal law.'

cURL

curl "http://localhost:5000/predict" \
    -X POST -H "Content-Type: application/json" \
    -d '{
            "inputs":[
                {
                    "text":"The Wimbledon tennis tournament starts next week!"
                },
                {
                    "text":"The Canadian government officials proposed the new federal law."
                }
            ]
        }' | json_pp

Requests

import json
import requests

headers = {
    'Content-Type': 'application/json',
}

data = {
    "experiment_id": "latest",
    "inputs": [
        {
            "text": "The Wimbledon tennis tournament starts next week!"
        },
        {
            "text": "The Canadian minister signed in the new federal law."
        }
    ]
}

response = requests.post('http://0.0.0.0:5000/predict',
                         headers=headers, data=json.dumps(data))
results = json.loads(response.text)
print (json.dumps(results, indent=2, sort_keys=False))

Streamlit

streamlit run text_classification/streamlit.py
GOTO: http://localhost:8501

Tests

pytest

Docker

  1. Build image
docker build -t text-classification:latest -f Dockerfile .
  1. Run container
docker run -d -p 5000:5000 -p 6006:6006 --name text-classification text-classification:latest

Heroku

Set `WANDB_API_KEY` as an environment variable.

Directory structure

text-classification/
โ”œโ”€โ”€ datasets/                           - datasets
โ”œโ”€โ”€ logs/                               - directory of log files
|   โ”œโ”€โ”€ errors/                           - error log
|   โ””โ”€โ”€ info/                             - info log
โ”œโ”€โ”€ tests/                              - unit tests
โ”œโ”€โ”€ text_classification/                - ml scripts
|   โ”œโ”€โ”€ app.py                            - app endpoints
|   โ”œโ”€โ”€ config.py                         - configuration
|   โ”œโ”€โ”€ data.py                           - data processing
|   โ”œโ”€โ”€ models.py                         - model architectures
|   โ”œโ”€โ”€ predict.py                        - prediction script
|   โ”œโ”€โ”€ streamlit.py                      - streamlit app
|   โ”œโ”€โ”€ train.py                          - training script
|   โ””โ”€โ”€ utils.py                          - load embeddings and utilities
โ”œโ”€โ”€ wandb/                              - wandb experiment runs
โ”œโ”€โ”€ .dockerignore                       - files to ignore on docker
โ”œโ”€โ”€ .gitignore                          - files to ignore on git
โ”œโ”€โ”€ CODE_OF_CONDUCT.md                  - code of conduct
โ”œโ”€โ”€ CODEOWNERS                          - code owner assignments
โ”œโ”€โ”€ CONTRIBUTING.md                     - contributing guidelines
โ”œโ”€โ”€ Dockerfile                          - dockerfile to containerize app
โ”œโ”€โ”€ LICENSE                             - license description
โ”œโ”€โ”€ logging.json                        - logger configuration
โ”œโ”€โ”€ Procfile                            - process script for Heroku
โ”œโ”€โ”€ README.md                           - this README
โ”œโ”€โ”€ requirements.txt                    - requirementss
โ”œโ”€โ”€ setup.sh                            - streamlit setup for Heroku
โ””โ”€โ”€ sweeps.yaml                         - hyperparameter wandb sweeps config

Overfit to small subset

python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --data-size 0.1 --num-epochs 3

Experiments

  1. Random, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle
  1. GloVe, frozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove --freeze-embeddings
  1. GloVe, unfrozen, embeddings
python text_classification/train.py \
    --data-url https://raw.githubusercontent.com/madewithml/lessons/master/data/news.csv --lower --shuffle --use-glove

Next steps

End-to-end topics that will be covered in subsequent lessons.

  • Utilizing wrappers like PyTorch Lightning to structure the modeling even more while getting some very useful utility.
  • Data / model version control (Artifacts, DVC, MLFlow, etc.)
  • Experiment tracking options (MLFlow, KubeFlow, WandB, Comet, Neptune, etc)
  • Hyperparameter tuning options (Optuna, Hyperopt, Sweeps)
  • Multi-process data loading
  • Dealing with imbalanced datasets
  • Distributed training for much larger models
  • GitHub actions for automatic testing during commits
  • Prediction fail safe techniques (input analysis, class-specific thresholds, etc.)

Helpful docker commands

โ€ข Build image

docker build -t madewithml:latest -f Dockerfile .

โ€ข Run container if using CMD ["python", "app.py"] or ENTRYPOINT [ "/bin/sh", "entrypoint.sh"]

docker run -p 5000:5000 --name madewithml madewithml:latest

โ€ข Get inside container if using CMD ["/bin/bash"]

docker run -p 5000:5000 -it madewithml /bin/bash

โ€ข Run container with mounted volume

docker run -p 5000:5000 -v $PWD:/root/madewithml/ --name madewithml madewithml:latest

โ€ข Other flags

-d: detached
-ti: interative terminal

โ€ข Clean up

docker stop $(docker ps -a -q)     # stop all containers
docker rm $(docker ps -a -q)       # remove all containers
docker rmi $(docker images -a -q)  # remove all images
Owner
Made With ML
Applied ML ยท MLOps ยท Production
Made With ML
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
๐Ÿ’› Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (เค‹เคทเคฟเค•เฅ‡เคถ) 175 Dec 23, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022