X-VLM: Multi-Grained Vision Language Pre-Training

Overview

X-VLM: learning multi-grained vision language alignments

Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xinsong Zhang, Hang Li. arXiv 2021.

  • Jan 2022: release official PyTorch implementation and X-VLM-base checkpoints
  • Dec 2021: X-VLM-base (4M) achieves new SoTA
  • Nov 2021: release preprint in arXiv

Hiring

We are looking for interns at ByteDance AI-LAB (in Beijing / Shanghai)! If you are interested in working with us on vision language models, please send your resume to [email protected].

Features

  • Support several backbones
    • vision encoder: deit / clip-vit / swin-transformer
    • text encoder: bert / roberta
  • Support apex O1 / O2 for pre-training
  • Read from and write to HDFS
  • Distributed training across nodes for both pre-training and fine-tuning

Please read the code for more details.

Requirements

  • Install python3 environment
pip3 install -r requirements.txt
  • Download raw images from corresponding websites
  • Download the json files we provided, which contains image read paths and captions and/or bbox annotations
  • If running pre-training scripts:
  • Organize these files like this (% is for pre-training only):
X-VLM/
    data/
        finetune/
            refcoco+/*.json
            *.json
        
        %pretrain_4m/*.json
        %swin_base_patch4_window7_224_22k.pth
        %bert-base-uncased/
            config.json
            pytorch_model.bin
            tokenizer_config.json
            tokenizer.json
            vocab.txt

    images/
        coco/
            train2014/*.jpg
            val2014/*.jpg
            test2015/*.jpg
        
        visualgenome/
            image/*.jpg
        
        nlvr2/
            images/
                train/0-99/*.png
            dev/*.png
            test1/*.png
        
        %sbu/*.jpg
        %cc-3m/*.jpg

Pretrain

python3 run.py --task "pretrain_4m_base" --dist "1" --output_dir "output/pretrain_4m_base"

For distributed training across nodes, see run.py for more details.

Data

We are organizing the data and the scripts. All these will be released in Vision-Language-Data in March. Please feel free to prepare your own datasets by referring the code in dataset/pretrain_dataset.py.

Checkpoints

X-VLM-base (4M)
X-VLM-base 14M, WIP
X-VLM-large 14M, WIP

Finetune

2 nodes for fine-tuning, specify --output_hdfs to save some tmp results. # evaluate python3 run.py --task "vqa" --dist "1" --evaluate --output_dir "output/vqa_eval" --checkpoint "4m_base_finetune/vqa/model_state_epoch_9.th" ">
# train
python3 run.py --task "vqa" --dist "1" --output_dir "output/vqa" --checkpoint "4m_base_model_state_step_199999.th"
python3 run.py --task "vqa" --dist "all" --output_dir "output/vqa" --output_hdfs "hdfs://xxx/vqa_tmp" --checkpoint "4m_base_model_state_step_199999.th"  # if using >2 nodes for fine-tuning, specify --output_hdfs to save some tmp results.

# evaluate
python3 run.py --task "vqa" --dist "1" --evaluate --output_dir "output/vqa_eval" --checkpoint "4m_base_finetune/vqa/model_state_epoch_9.th" 

See run.py for fine-tuning on other tasks (Retrieval, NLVR2, RefCOCO). We set some python assertions to help you run the code correctly. The fine-tuning scripts are based on ALBEF. We thank the author for opening source their code.

Data

download json files

Checkpoints and Logs

retrieval-mscoco
retrieval-flickr
vqa
nlvr2
refcoco
refcoco-bbox
Note that fine-tuning configs are given in "X-VLM/configs/*.yaml"

Citation

If you use this code, please considering citing:

@article{xvlm,
  title={Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts},
  author={Zeng, Yan and Zhang, Xinsong and Li, Hang},
  journal={arXiv preprint arXiv:2111.08276},
  year={2021}
}

Contact

For issues or help using this code, please submit a GitHub issue.

Owner
Yan Zeng
Yan Zeng
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022