Meta Learning Backpropagation And Improving It (VSML)

Overview

Meta Learning Backpropagation And Improving It (VSML)

This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021.

Many concepts have been proposed for meta learning with neural networks (NNs), e.g., NNs that learn to reprogram fast weights, Hebbian plasticity, learned learning rules, and meta recurrent NNs. Our Variable Shared Meta Learning (VSML) unifies the above and demonstrates that simple weight-sharing and sparsity in an NN is sufficient to express powerful learning algorithms (LAs) in a reusable fashion. A simple implementation of VSML where the weights of a neural network are replaced by tiny LSTMs allows for implementing the backpropagation LA solely by running in forward-mode. It can even meta learn new LAs that differ from online backpropagation and generalize to datasets outside of the meta training distribution without explicit gradient calculation. Introspection reveals that our meta learned LAs learn through fast association in a way that is qualitatively different from gradient descent.

Installation

Create a virtual env

python3 -m venv venv
. venv/bin/activate

Install pip dependencies

pip3 install --upgrade pip wheel setuptools
pip3 install -r requirements.txt

Initialize weights and biases

wandb init

Inspect your results at https://wandb.ai/.

Run instructions

Non distributed

For any algorithm that does not require multiple workers.

python3 launch.py --config_files CONFIG_FILES --config arg1=val1 arg2=val2

Distributed

For any algorithm that does require multiple workers

GPU_COUNT=4 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

where NUM_WORKERS is the number of workers to run. The assign_gpu python script distributes the mpi workers evenly over the specified GPUs

Alternatively, specify the CUDA_VISIBLE_DEVICES instead of GPU_COUNT env variable:

CUDA_VISIBLE_DEVICES=0,2,3 mpirun -n NUM_WORKERS python3 assign_gpu.py python3 launch.py

Slurm-based cluster

Modify slurm/schedule.sh and slurm/job.sh to suit your environment.

bash slurm/schedule.sh --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

If only a single worker is required (non-distributed), set --nodes=1 and --ntasks-per-node=1.

Remote (via ssh)

Modify ssh/schedule.sh to suit your environment. Requires gpustat in .local/bin/gpustat, via pip3 install --user gpustat. Also install tmux and mpirun.

bash ssh/schedule.sh --host HOST_NAME --nodes=7 --ntasks-per-node=12 -- python3 launch.py --config_files CONFIG_FILES

Example training runs

Section 4.2 Figure 6

VSML

slurm/schedule.py --nodes=128 --time 04:00:00 -- python3 launch.py --config_files configs/rand_proj.yaml

You can also try fewer nodes and use --config training.population_size=128. Or use backpropagation-based meta optimization --config_files configs/{rand_proj,backprop}.yaml.

Section 4.4 Figure 8

VSML

slurm/schedule.py --array=1-11 --nodes=128 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml

Meta RNN (Hochreiter 2001)

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{metarnn,pad}.yaml --tags metarnn

Fast weight memory

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{fwmemory,pad}.yaml --tags fwmemory

SGD

slurm/schedule.py --array=1-4 --nodes=2 --time 00:15:00 -- python3 launch.py --array configs/array/sgd.yaml --config_files configs/sgd.yaml --tags sgd

Hebbian

slurm/schedule.py --array=1-11 --nodes=32 --time 04:00:00 -- python3 launch.py --array configs/array/datasets.yaml --config_files configs/{hebbian,pad}.yaml --tags hebbian
Owner
Louis Kirsch
Building RL agents that meta-learn their own learning algorithm. Currently pursuing a PhD in AI at IDSIA with Jürgen Schmidhuber. Previous DeepMind intern.
Louis Kirsch
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Linear image-to-image translation

Linear (Un)supervised Image-to-Image Translation Examples for linear orthogonal transformations in PCA domain, learned without pairing supervision. Tr

Eitan Richardson 40 Aug 31, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022