Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Overview

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021]

This is the official pytorch implementation of BCNet built on the open-source detectron2.

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Lei Ke, Yu-Wing Tai, Chi-Keung Tang
CVPR 2021

  • Two-stage instance segmentation with state-of-the-art performance.
  • Image formation as composition of two overlapping layers.
  • Bilayer decoupling for the occluder and occludee.
  • Efficacy on both the FCOS and Faster R-CNN detectors.

Under construction. Our code and pretrained model will be fully released in two months.

Visualization of Occluded Objects

Qualitative instance segmentation results of our BCNet, using ResNet-101-FPN and Faster R-CNN detector. The bottom row visualizes squared heatmap of contour and mask predictions by the two GCN layers for the occluder and occludee in the same ROI region specified by the red bounding box, which also makes the final segmentation result of BCNet more explainable than previous methods.

Qualitative instance segmentation results of our BCNet, using ResNet-101-FPN and FCOS detector.

Results on COCO test-dev

(Check Table 8 of the paper for full results, all methods are trained on COCO train2017)

Detector Backbone Method mAP(mask)
Faster R-CNN ResNet-50 FPN Mask R-CNN 34.2
Faster R-CNN ResNet-50 FPN MS R-CNN 35.6
Faster R-CNN ResNet-50 FPN PointRend 36.3
Faster R-CNN ResNet-50 FPN PANet 36.6
Faster R-CNN ResNet-50 FPN BCNet 38.4
Faster R-CNN ResNet-101 FPN Mask R-CNN 36.1
Faster R-CNN ResNet-101 FPN BMask R-CNN 37.7
Faster R-CNN ResNet-101 FPN MS R-CNN 38.3
Faster R-CNN ResNet-101 FPN BCNet 39.8, [Pretrained Model]
FCOS ResNet-101 FPN SipMask 37.8
FCOS ResNet-101 FPN BlendMask 38.4
FCOS ResNet-101 FPN CenterMask 38.3
FCOS ResNet-101 FPN BCNet 39.6, [Pretrained Model]

Introduction

Segmenting highly-overlapping objects is challenging, because typically no distinction is made between real object contours and occlusion boundaries. Unlike previous two-stage instance segmentation methods, BCNet models image formation as composition of two overlapping layers, where the top GCN layer detects the occluding objects (occluder) and the bottom GCN layer infers partially occluded instance (occludee). The explicit modeling of occlusion relationship with bilayer structure naturally decouples the boundaries of both the occluding and occluded instances, and considers the interaction between them during mask regression. We validate the efficacy of bilayer decoupling on both one-stage and two-stage object detectors with different backbones and network layer choices. The network of BCNet is as follows:

Step-by-step Installation

conda create -n bcnet python=3.7 -y
source activate bcnet
 
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
 
# FCOS and coco api and visualization dependencies
pip install ninja yacs cython matplotlib tqdm
pip install opencv-python==4.4.0.40
 
export INSTALL_DIR=$PWD
 
# install pycocotools. Please make sure you have installed cython.
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install
 
# install BCNet
cd $INSTALL_DIR
git clone https://github.com/lkeab/BCNet.git
cd BCNet/
python3 setup.py build develop
 
unset INSTALL_DIR

Dataset Preparation

Prepare for coco2017 dataset following this instruction. And use our converted mask annotations to replace original annotation file for bilayer decoupling training.

  mkdir -p datasets/coco
  ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
  ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
  ln -s /path_to_coco_dataset/test2017 datasets/coco/test2017
  ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017

Multi-GPU Training and evaluation on Validation set

bash all.sh

Or

CUDA_VISIBLE_DEVICES=0,1 python3 tools/train_net.py --num-gpus 2 \
	--config-file configs/fcos/fcos_imprv_R_50_FPN_1x.yaml 2>&1 | tee log/train_log.txt

Pretrained Models

TBD

  mkdir pretrained_models
  #And put the downloaded pretrained models in this directory.

Testing on Test-dev

TBD

bash eval.sh

Citations

If you find BCNet useful in your research, please star this repository and consider citing:

@inproceedings{ke2021bcnet,
    author = {Ke, Lei and Tai, Yu-Wing and Tang, Chi-Keung},
    title = {Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers},
    booktitle = {CVPR},
    year = {2021},
}   

License

BCNet is released under the MIT license. See LICENSE for additional details. Thanks to the Third Party Libs detectron2

Owner
Lei Ke
PhD student in Computer Vision, HKUST
Lei Ke
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Tensor-Based Quantum Machine Learning

TensorLy_Quantum TensorLy-Quantum is a Python library for Tensor-Based Quantum Machine Learning that builds on top of TensorLy and PyTorch. Website: h

TensorLy 85 Dec 03, 2022
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Decentralized Reinforcment Learning: Global Decision-Making via Local Economic Transactions (ICML 2020)

Decentralized Reinforcement Learning This is the code complementing the paper Decentralized Reinforcment Learning: Global Decision-Making via Local Ec

40 Oct 30, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023