Official implementation of paper Gradient Matching for Domain Generalization

Related tags

Deep Learningfish
Overview

Gradient Matching for Domain Generalisation

This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper, we propose an inter-domain gradient matching (IDGM) objective that targets domain generalization by maximizing the inner product between gradients from different domains. To avoid computing the expensive second-order derivative of the IDGM objective, we derive a simpler first-order algorithm named Fish that approximates its optimization.

This repository contains code to reproduce the main results of our paper.

Dependencies

(Recommended) You can setup up conda environment with all required dependencies using environment.yml:

conda env create -f environment.yml
conda activate fish

Otherwise you can also install the following packages manually:

python=3.7.10
numpy=1.20.2
pytorch=1.8.1
torchaudio=0.8.1
torchvision=0.9.1
torch-cluster=1.5.9
torch-geometric=1.7.0
torch-scatter=2.0.6
torch-sparse=0.6.9
wilds=1.1.0
scikit-learn=0.24.2
scipy=1.6.3
seaborn=0.11.1
tqdm=4.61.0

Running Experiments

We offer options to train using our proposed method Fish or by using Empirical Risk Minimisation baseline. This can be specified by the --algorithm flag (either fish or erm).

CdSprites-N

We propose this simple shape-color dataset based on the dSprites dataset, which contains a collection of white 2D sprites of different shapes, scales, rotations and positions. The dataset contains N domains, where N can be specified. The goal is to classify the shape of the sprites, and there is a shape-color deterministic matching that is specific per domain. This way we have shape as the invariant feature and color as the spurious feature. On the test set, however, this correlation between color and shape is removed. See the image below for an illustration.

cdsprites

The CdSprites-N dataset can be downloaded here. After downloading, please extract the zip file to your preferred data dir (e.g. <your_data_dir>/cdsprites). The following command runs an experiment using Fish with number of domains N=15:

python main.py --dataset cdsprites --algorithm fish --data-dir <your_data_dir> --num-domains 15

The number of domains you can choose from are: N = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

WILDS

We include the following 6 datasets from the WILDS benchmark: amazon, camelyon, civil, fmow, iwildcam, poverty. The datasets can be downloaded automatically to a specified data folder. For instance, to train with Fish on Amazon dataset, simply run:

python main.py --dataset amazon --algorithm fish --data-dir <your_data_dir>

This should automatically download the Amazon dataset to <your_data_dir>/wilds. Experiments on other datasets can be ran by the following commands:

python main.py --dataset camelyon --algorithm fish --data-dir <your_data_dir>
python main.py --dataset civil --algorithm fish --data-dir <your_data_dir>
python main.py --dataset fmow --algorithm fish --data-dir <your_data_dir>
python main.py --dataset iwildcam --algorithm fish --data-dir <your_data_dir>
python main.py --dataset poverty --algorithm fish --data-dir <your_data_dir>

Alternatively, you can also download the datasets to <your_data_dir>/wilds manually by following the instructions here. See current results on WILDS here: image

DomainBed

For experiments on datasets including CMNIST, RMNIST, VLCS, PACS, OfficeHome, TerraInc and DomainNet, we implemented Fish on the DomainBed benchmark (see here) and you can compare our algorithm against up to 20 SOTA baselines. See current results on DomainBed here:

image

Citation

If you make use of this code in your research, we would appreciate if you considered citing the paper that is most relevant to your work:

@article{shi2021gradient,
	title="Gradient Matching for Domain Generalization.",
	author="Yuge {Shi} and Jeffrey {Seely} and Philip H. S. {Torr} and N. {Siddharth} and Awni {Hannun} and Nicolas {Usunier} and Gabriel {Synnaeve}",
	journal="arXiv preprint arXiv:2104.09937",
	year="2021"}

Contributions

We welcome contributions via pull requests. Please email [email protected] or [email protected] for any question/request.

RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
PyTorch Connectomics: segmentation toolbox for EM connectomics

Introduction The field of connectomics aims to reconstruct the wiring diagram of the brain by mapping the neural connections at the level of individua

Zudi Lin 132 Dec 26, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. NausÄ—das 7 Nov 22, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023