The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Overview

Kernelized-HRM

Jiashuo Liu, Zheyuan Hu

The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the codes for our Classification with Spurious Correlation and Regression with Selection Bias simulated experiments, including the data generation process, the whole Kernelized-HRM algorithm and the testing process.

Details

There are two files, named KernelHRM_sim1.py and KernelHRM_sim2.py, which contains the code for the classification simulation experiment and the regression simulation experiment, respectively. The details of codes are:

  • generate_data_list: generate data according to the given parameters args.r_list.

  • generate_test_data_list: generate the test data for Selection Bias experiment, where the args.r_list is pre-defined to [-2.9,-2.7,...,-1.9].

  • main_KernelHRM: the whole framework for our Kernelized-HRM algorithm.

Hypermeters

There are many hyper-parameters to be tuned for the whole framework, which are different among different tasks and require users to carefully tune. Note that although we provide the hyper-parameters for the simulated experiments, it is possible that the results are not exactly the same as ours, which may due to the randomness or something else.

Generally, the following hyper-parameters need carefully tuned:

  • k: controls the dimension of reduced neural tangent features
  • whole_epoch: controls the overall number of iterations between the frontend and the backend
  • epochs: controls the number of epochs of optimizing the invariant learning module in each iteration
  • IRM_lam: controls the strength of the regularizer for the invariant learning
  • lr: learning rate
  • cluster_num: controls the number of clusters

Further, for the experimental settings, the following parameters need to be specified:

  • r_list: controls the strength of spurious correlations
  • scramble: similar to IRM[2], whether to mix the raw features
  • num_list: controls the number of data points from each environment

As for the optimal hyper-parameters for our simulation experiments, we put them into the reproduce.sh file.

Others

Similar to HRM[3], we view the proposed Kernelized-HRM as a framework, which converts the non-linear and complicated data into linear and raw feature data by neural tangent kernel and includes the clustering module and the invariant prediction module. In practice, one can replace each model to anything they want with the same effect.

Though I hate to mention it, our method has the following shortcomings:

  • Just like the original HRM[3], the convergence of the frontend module cannot be guaranteed, and we notice that there may be some cases the next iteration does not improve the current results or even hurts.
  • Hyper-parameters for different tasks may be quite different and need to be tuned carefully.
  • Whether this algorithm can be extended to more complicated image data, such as PACS, NICO et al. remains to be seen.(Maybe later we will have a try?)

Reference

[1] Jiasuho Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Kernelized Heterogeneous Risk Minimization. In NeurIPS 2021.

[2] Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization.

[3] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimziation. In ICML 2021.

Owner
Liu Jiashuo
THU-TrustAI(THU-TAI) Group
Liu Jiashuo
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

This repository contains an overview of important follow-up works based on the original Vision Transformer (ViT) by Google.

75 Dec 02, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
A repository for generating stylized talking 3D and 3D face

style_avatar A repository for generating stylized talking 3D faces and 2D videos. This is the repository for paper Imitating Arbitrary Talking Style f

Haozhe Wu 191 Dec 22, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
a spacial-temporal pattern detection system for home automation

Argos a spacial-temporal pattern detection system for home automation. Based on OpenCV and Tensorflow, can run on raspberry pi and notify HomeAssistan

Angad Singh 133 Jan 05, 2023
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022