Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Overview

Travis CI

Single Image Super-Resolution with EDSR, WDSR and SRGAN

A Tensorflow 2.x based implementation of

This is a complete re-write of the old Keras/Tensorflow 1.x based implementation available here. Some parts are still work in progress but you can already train models as described in the papers via a high-level training API. Furthermore, you can also fine-tune EDSR and WDSR models in an SRGAN context. Training and usage examples are given in the notebooks

A DIV2K data provider automatically downloads DIV2K training and validation images of given scale (2, 3, 4 or 8) and downgrade operator ("bicubic", "unknown", "mild" or "difficult").

Important: if you want to evaluate the pre-trained models with a dataset other than DIV2K please read this comment (and replies) first.

Environment setup

Create a new conda environment with

conda env create -f environment.yml

and activate it with

conda activate sisr

Introduction

You can find an introduction to single-image super-resolution in this article. It also demonstrates how EDSR and WDSR models can be fine-tuned with SRGAN (see also this section).

Getting started

Examples in this section require following pre-trained weights for running (see also example notebooks):

Pre-trained weights

  • weights-edsr-16-x4.tar.gz
    • EDSR x4 baseline as described in the EDSR paper: 16 residual blocks, 64 filters, 1.52M parameters.
    • PSNR on DIV2K validation set = 28.89 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-wdsr-b-32-x4.tar.gz
    • WDSR B x4 custom model: 32 residual blocks, 32 filters, expansion factor 6, 0.62M parameters.
    • PSNR on DIV2K validation set = 28.91 dB (images 801 - 900, 6 + 4 pixel border included).
  • weights-srgan.tar.gz
    • SRGAN as described in the SRGAN paper: 1.55M parameters, trained with VGG54 content loss.

After download, extract them in the root folder of the project with

tar xvfz weights-<...>.tar.gz

EDSR

from model import resolve_single
from model.edsr import edsr

from utils import load_image, plot_sample

model = edsr(scale=4, num_res_blocks=16)
model.load_weights('weights/edsr-16-x4/weights.h5')

lr = load_image('demo/0851x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-edsr

WDSR

from model.wdsr import wdsr_b

model = wdsr_b(scale=4, num_res_blocks=32)
model.load_weights('weights/wdsr-b-32-x4/weights.h5')

lr = load_image('demo/0829x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-wdsr

Weight normalization in WDSR models is implemented with the new WeightNormalization layer wrapper of Tensorflow Addons. In its latest version, this wrapper seems to corrupt weights when running model.predict(...). A workaround is to set model.run_eagerly = True or compile the model with model.compile(loss='mae') in advance. This issue doesn't arise when calling the model directly with model(...) though. To be further investigated ...

SRGAN

from model.srgan import generator

model = generator()
model.load_weights('weights/srgan/gan_generator.h5')

lr = load_image('demo/0869x4-crop.png')
sr = resolve_single(model, lr)

plot_sample(lr, sr)

result-srgan

DIV2K dataset

For training and validation on DIV2K images, applications should use the provided DIV2K data loader. It automatically downloads DIV2K images to .div2k directory and converts them to a different format for faster loading.

Training dataset

from data import DIV2K

train_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='train')      # Training dataset are images 001 - 800
                     
# Create a tf.data.Dataset          
train_ds = train_loader.dataset(batch_size=16,         # batch size as described in the EDSR and WDSR papers
                                random_transform=True, # random crop, flip, rotate as described in the EDSR paper
                                repeat_count=None)     # repeat iterating over training images indefinitely

# Iterate over LR/HR image pairs                                
for lr, hr in train_ds:
    # .... 

Crop size in HR images is 96x96.

Validation dataset

from data import DIV2K

valid_loader = DIV2K(scale=4,             # 2, 3, 4 or 8
                     downgrade='bicubic', # 'bicubic', 'unknown', 'mild' or 'difficult' 
                     subset='valid')      # Validation dataset are images 801 - 900
                     
# Create a tf.data.Dataset          
valid_ds = valid_loader.dataset(batch_size=1,           # use batch size of 1 as DIV2K images have different size
                                random_transform=False, # use DIV2K images in original size 
                                repeat_count=1)         # 1 epoch
                                
# Iterate over LR/HR image pairs                                
for lr, hr in valid_ds:
    # ....                                 

Training

The following training examples use the training and validation datasets described earlier. The high-level training API is designed around steps (= minibatch updates) rather than epochs to better match the descriptions in the papers.

EDSR

from model.edsr import edsr
from train import EdsrTrainer

# Create a training context for an EDSR x4 model with 16 
# residual blocks.
trainer = EdsrTrainer(model=edsr(scale=4, num_res_blocks=16), 
                      checkpoint_dir=f'.ckpt/edsr-16-x4')
                      
# Train EDSR model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)
              
# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/edsr-16-x4/weights.h5')                                    

Interrupting training and restarting it again resumes from the latest saved checkpoint. The trained Keras model can be accessed with trainer.model.

WDSR

from model.wdsr import wdsr_b
from train import WdsrTrainer

# Create a training context for a WDSR B x4 model with 32 
# residual blocks.
trainer = WdsrTrainer(model=wdsr_b(scale=4, num_res_blocks=32), 
                      checkpoint_dir=f'.ckpt/wdsr-b-8-x4')

# Train WDSR B model for 300,000 steps and evaluate model
# every 1000 steps on the first 10 images of the DIV2K
# validation set. Save a checkpoint only if evaluation
# PSNR has improved.
trainer.train(train_ds,
              valid_ds.take(10),
              steps=300000, 
              evaluate_every=1000, 
              save_best_only=True)

# Restore from checkpoint with highest PSNR.
trainer.restore()

# Evaluate model on full validation set.
psnr = trainer.evaluate(valid_ds)
print(f'PSNR = {psnr.numpy():3f}')

# Save weights to separate location.
trainer.model.save_weights('weights/wdsr-b-32-x4/weights.h5')

SRGAN

Generator pre-training

from model.srgan import generator
from train import SrganGeneratorTrainer

# Create a training context for the generator (SRResNet) alone.
pre_trainer = SrganGeneratorTrainer(model=generator(), checkpoint_dir=f'.ckpt/pre_generator')

# Pre-train the generator with 1,000,000 steps (100,000 works fine too). 
pre_trainer.train(train_ds, valid_ds.take(10), steps=1000000, evaluate_every=1000)

# Save weights of pre-trained generator (needed for fine-tuning with GAN).
pre_trainer.model.save_weights('weights/srgan/pre_generator.h5')

Generator fine-tuning (GAN)

from model.srgan import generator, discriminator
from train import SrganTrainer

# Create a new generator and init it with pre-trained weights.
gan_generator = generator()
gan_generator.load_weights('weights/srgan/pre_generator.h5')

# Create a training context for the GAN (generator + discriminator).
gan_trainer = SrganTrainer(generator=gan_generator, discriminator=discriminator())

# Train the GAN with 200,000 steps.
gan_trainer.train(train_ds, steps=200000)

# Save weights of generator and discriminator.
gan_trainer.generator.save_weights('weights/srgan/gan_generator.h5')
gan_trainer.discriminator.save_weights('weights/srgan/gan_discriminator.h5')

SRGAN for fine-tuning EDSR and WDSR models

It is also possible to fine-tune EDSR and WDSR x4 models with SRGAN. They can be used as drop-in replacement for the original SRGAN generator. More details in this article.

# Create EDSR generator and init with pre-trained weights
generator = edsr(scale=4, num_res_blocks=16)
generator.load_weights('weights/edsr-16-x4/weights.h5')

# Fine-tune EDSR model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
# Create WDSR B generator and init with pre-trained weights
generator = wdsr_b(scale=4, num_res_blocks=32)
generator.load_weights('weights/wdsr-b-16-32/weights.h5')

# Fine-tune WDSR B  model via SRGAN training.
gan_trainer = SrganTrainer(generator=generator, discriminator=discriminator())
gan_trainer.train(train_ds, steps=200000)
Owner
Martin Krasser
Freelance machine learning engineer, software developer and consultant. Mountainbike freerider, bass guitar player.
Martin Krasser
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023