Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Overview

Understanding Minimum Bayes Risk Decoding

This repo provides code and documentation for the following paper:

Müller and Sennrich (2021): Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

@inproceedings{muller2021understanding,
      title={Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation}, 
      author = {M{\"u}ller, Mathias  and
      Sennrich, Rico},
      year={2021},
      eprint={2105.08504},
      booktitle = "Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)"
}

Basic Setup

Clone this repo in the desired place:

git clone https://github.com/ZurichNLP/understanding-mbr
cd understanding-mbr

then proceed to install software before running any experiments.

Install required software

Create a new virtualenv that uses Python 3. Please make sure to run this command outside of any virtual Python environment:

./scripts/create_venv.sh

Important: Then activate the env by executing the source command that is output by the shell script above.

Download and install required software:

./scripts/download.sh

The download script makes several important assumptions, such as: your OS is Linux, you have CUDA 10.2 installed, you have access to a GPU for training and translation, your folder for temp files is /var/tmp. Edit the script before running it to fit to your needs.

Running experiments in general

Definition of "run"

We define a "run" as one complete experiment, in the sense that a run executes a pipeline of steps. Every run is completely self-contained: it does everything from downloading the data until evaluation of a trained model.

The series of steps executed in a run is defined in

scripts/tatoeba/run_tatoeba_generic.sh

This script is generic and will never be called on its own (many variables would be undefined), but all our scripts eventually call this script.

SLURM jobs

Individual steps in runs are submitted to a SLURM system. The generic run script:

scripts/tatoeba/run_tatoeba_generic.sh

will submit each individual step (such as translation, or model training) as a separate SLURM job. Depending on the nature of the task, the scripts submits to a different cluster, or asks for different resources.

IMPORTANT: if

  • you do not work on a cluster that uses SLURM for job management,
  • your cluster layout, resource naming etc. is different

you absolutely need to modify or replace the generic script scripts/tatoeba/run_tatoeba_generic.sh before running anything. If you do not use SLURM at all, it might be possible to just replace calls to scripts/tatoeba/run_tatoeba_generic.sh with scripts/tatoeba/run_tatoeba_generic_no_slurm.sh.

scripts/tatoeba/run_tatoeba_generic_no_slurm.sh is a script we provide for convenience, but have not tested it ourselves. We cannot guarantee that it runs without error.

Dry run

Before you run actual experiments, it can be useful to perform a dry run. Dry runs attempt to run all commands, create all files etc. but are finished within minutes and use CPU only. Dry runs help to catch some bugs (such as file permissions) early.

To dry-run a baseline system for the language pair DAN-EPO, run:

./scripts/tatoeba/dry_run_baseline.sh

Single (non-dry!) example run

To run the entire pipeline (downloading data until evaluation of trained model) for a single language pair from Tatoeba, run

./scripts/tatoeba/run_baseline.sh

This will train a model for the language pair DAN-EPO, but also execute all steps before and after model training.

Start a certain group of runs

It is possible to submit several runs at the same time, using the same shell script. For instance, to run all required steps for a number of medium-resource language pairs, run

./scripts/tatoeba/run_mediums.sh

Recovering partial runs

Steps within a run pipeline depend on each other (SLURM sbatch --afterok dependency in most cases). This means that if a job X fails, subsequent jobs that depend on X will never start. If you attempt to re-run completed steps they exit immediately -- so you can always re-run an entire pipeline if any step fails.

Reproducing the results presented in our paper in particular

Training and evaluating the models

To create all models and statistics necessary to compare MBR with different utility functions:

scripts/tatoeba/run_compare_risk_functions.sh

To reproduce experiments on domain robustness:

scripts/tatoeba/run_robustness_data.sh

To reproduce experiments on copy noise in the training data:

scripts/tatoeba/run_copy_noise.sh

Creating visualizations and result tables

To reproduce exactly the tables and figures we show in the paper, use our Google Colab here:

https://colab.research.google.com/drive/1GYZvxRB1aebOThGllgb0teY8A4suH5j-?usp=sharing

This is possible only because we have hosted the results of our experiments on our servers and Colab can retrieve files from there.

Browse MBR samples

We also provide examples for pools of MBR samples for your perusal, as HTML files that can be viewed in any browser. The example HTML files are created by running the following script:

./scripts/tatoeba/local_html.sh

and are available at the following URLs (Markdown does not support clickable links, sorry!):

Domain robustness

language pair domain test set link
DEU-ENG it https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.it.html
DEU-ENG koran https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.koran.html
DEU-ENG law https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.law.html
DEU-ENG medical https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.medical.html
DEU-ENG subtitles https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/deu-eng.domain_robustness.subtitles.html

Copy noise in training data

language pair amount of copy noise link
ARA-DEU 0.001 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.001.slice-test.html
ARA-DEU 0.005 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.005.slice-test.html
ARA-DEU 0.01 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.01.slice-test.html
ARA-DEU 0.05 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.05.slice-test.html
ARA-DEU 0.075 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.075.slice-test.html
ARA-DEU 0.1 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.1.slice-test.html
ARA-DEU 0.25 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.25.slice-test.html
ARA-DEU 0.5 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/ara-deu.copy_noise.0.5.slice-test.html
language pair amount of copy noise link
ENG-MAR 0.001 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.001.slice-test.html
ENG-MAR 0.005 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.005.slice-test.html
ENG-MAR 0.01 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.01.slice-test.html
ENG-MAR 0.05 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.05.slice-test.html
ENG-MAR 0.075 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.075.slice-test.html
ENG-MAR 0.1 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.1.slice-test.html
ENG-MAR 0.25 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.25.slice-test.html
ENG-MAR 0.5 https://files.ifi.uzh.ch/cl/archiv/2020/clcontra/eng-mar.copy_noise.0.5.slice-test.html
Owner
ZurichNLP
University of Zurich, Department of Computational Linguistics
ZurichNLP
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022