SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

Related tags

Deep LearningSkipGNN
Overview

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks

Molecular interaction networks are powerful resources for the discovery. While deep learning on graphs has dramatically advanced the prediction prowess, current graph neural network (GNN) methods are optimized for prediction on the basis of direct similarity between interacting nodes. In biological networks, however, similarity between nodes that do not directly interact has proved incredibly useful in the last decade across a variety of interaction networks.

Here, we present SkipGNN, it predicts molecular interactions by not only aggregating information from direct interactions but also from second-order interactions, which we call skip similarity. In contrast to existing GNNs, SkipGNN receives neural messages from two-hop neighbors as well as immediate neighbors in the interaction network and non-linearly transforms the messages to obtain useful information for prediction.

fig1

(Left) Traditionally, an interaction between nodes A and B implies that A and B are similar and vice versa. (Right) In contrast, in molecular interaction networks, directly interacting entities are not necessarily similar, which has been observed in numerous networks, including genetic interaction networks and protein-protein interaction networks.

Install

git clone https://github.com/kexinhuang12345/SkipGNN.git
cd SkipGNN
python setup.py install

Example

python train.py \
    --epochs 15 \
    --lr 5e-4 \
    --batch_size 256 \
    --hidden1 64 \
    --hidden2 16 \
    --hidden_decode1 512 \
    --network_type DTI \
    --data_path '../data/DTI/fold1' \
    --input_type one_hot

You can change the network_type to DTI, DDI, PPI, GDI. Please change the data_path accordingly.

In the paper, we use node2vec to initialize the node attributes. But empirically, we find simple one-hot position encoding is also good for SkipGNN. If you want to reproduce the result, you could put the node2vec embedding generated from this repo under data/DTI/fold1/dti.emb and set --input_type node2vec.

A Jupyter notebook example is provided in DEMO.

Dataset

We provide the dataset in the data folder.

Data Source Description Processing Code
DTI BIOSNAP A drug-target interaction network betweeen 5,018 drugs that target 2,325 proteins with 15,139 interactions. The drugs are from the US market. data_process_DTI.ipynb
DDI BIOSNAP A drug-drug interaction network betweeen 1,514 drugs with 48,514 interactions, which are approved by the FDA. data_process_DDI.ipynb
PPI HuRI A protein-protein interaction network from the Human Reference Protein Interactome Mapping Project. We use the HuRI-III version from the L3 paper. It consists of 5,604 proteins with 23,322 interactions. data_process_PPI.ipynb
GDI DisGeNET A disease-gene association network betweeen 9,413 genes and 10,370 diseases with 81,746 associations, which are curated from GWAS studies. data_process_GDI.ipynb

Skip-Graph Construction

To integrate the power of skip-graph in your own GNN codes, you could simply apply a new GNN on the skip graph, which is generated using two lines. adj is a scipy.sparse adjacency matrix for the original graph.

adj_skip = adj.dot(adj)
adj_skip = adj_skip.sign()

See here for more details.

Cite Us

Cite arxiv for now:

@article{huang2020skipgnn,
  title={SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks},
  author={Huang, Kexin and Xiao, Cao and Glass, Lucas and Zitnik, Marinka and Sun, Jimeng},
  journal={arXiv preprint arXiv:2004.14949},
  year={2020}
}

The code framework is based on pygcn.

Contact

Please send questions to [email protected] or open an issue.

Owner
Kexin Huang
Health Data Science @ Harvard, prev. NYU Math & CS
Kexin Huang
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022