A PyTorch Implementation of Neural IMage Assessment

Overview

NIMA: Neural IMage Assessment

Python 3.6+ MIT License

This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Processing) by Hossein Talebi and Peyman Milanfar. You can learn more from this post at Google Research Blog.

Implementation Details

  • The model was trained on the AVA (Aesthetic Visual Analysis) dataset containing 255,500+ images. You can get it from here. Note: there may be some corrupted images in the dataset, remove them first before you start training. Use provided CSVs which have already done this for you.

  • Dataset is split into 229,981 images for training, 12,691 images for validation and 12,818 images for testing.

  • An ImageNet pretrained VGG-16 is used as the base network. Should be easy to plug in the other two options (MobileNet and Inception-v2).

  • The learning rate setting differs from the original paper. Can't seem to get the model to converge using the original params. Also didn't do much hyper-param tuning therefore you could probably get better results. Other settings are all directly mirrored from the paper.

Requirements

Code is written using PyTorch 1.8.1 with CUDA 11.1. You can recreate the environment I used with conda by

conda env create -f env.yml

to install the dependancies.

Usage

To start training on the AVA dataset, first download the dataset from the link above and decompress which should create a directory named images/. Then download the curated annotation CSVs below which already splits the dataset (You can create your own split of course). Then do

python main.py --img_path /path/to/images/ --train --train_csv_file /path/to/train_labels.csv --val_csv_file /path/to/val_labels.csv --conv_base_lr 5e-4 --dense_lr 5e-3 --decay --ckpt_path /path/to/ckpts --epochs 100 --early_stoppping_patience 10

For inference, do

python -W ignore test.py --model /path/to/your_model --test_csv /path/to/test_labels.csv --test_images /path/to/images --predictions /path/to/save/predictions

See predictions/ for dumped predictions as an example.

Training Statistics

Training is done with early stopping. Here I set early_stopping_patience=10.

Pretrained Model

~0.069 EMD on validation. Not fully converged yet (constrained by resources). To continue training, download the pretrained weights and add --warm_start --warm_start_epoch 34 to your args.

Google Drive

Annotation CSV Files

Train Validation Test

Example Results

  • Here first shows some good predictions from the test set. Each image title starts with ground-truth rating followed by the predicted mean and std in the parentheses.

  • Also some failure cases, it would seem that the model usually fails at images with low/high aesthetic ratings.

  • The predicted aesthetic ratings from training on the AVA dataset are sensitive to contrast adjustments, preferring images with higher contrast. Below top row is the reference image with contrast c=1.0, while bottom images are enhanced with contrast [0.25, 0.75, 1.25, 1.75]. Contrast adjustment is done using ImageEnhance.Contrast from PIL (in this case pillow-simd).

License

MIT

Owner
yunxiaos
yunxiaos
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

Creating Robust Representations from Pre-Trained Image Encoders using Contrastive Learning Sriram Ravula, Georgios Smyrnis This is the code for our pr

Sriram Ravula 26 Dec 10, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022