RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

Related tags

Deep LearningRDA
Overview

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

Updates

Paper

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking
Jiaxing Huang, Dayan Guan, Xiao Aoran, Shijian Lu
School of Computer Science Engineering, Nanyang Technological University, Singapore
International Conference on Computer Vision, 2021.

If you find this code/paper useful for your research, please cite our paper:

@article{huang2021rda,
  title={RDA: Robust Domain Adaptation via Fourier Adversarial Attacking},
  author={Huang, Jiaxing and Guan, Dayan and Xiao, Aoran and Lu, Shijian},
  journal={arXiv preprint arXiv:2106.02874},
  year={2021}
}

Abstract

Unsupervised domain adaptation (UDA) involves a supervised loss in a labeled source domain and an unsupervised loss in an unlabeled target domain, which often faces more severe overfitting (than classical supervised learning) as the supervised source loss has clear domain gap and the unsupervised target loss is often noisy due to the lack of annotations. This paper presents RDA, a robust domain adaptation technique that introduces adversarial attacking to mitigate overfitting in UDA. We achieve robust domain adaptation by a novel Fourier adversarial attacking (FAA) method that allows large magnitude of perturbation noises but has minimal modification of image semantics, the former is critical to the effectiveness of its generated adversarial samples due to the existence of domain gaps. Specifically, FAA decomposes images into multiple frequency components (FCs) and generates adversarial samples by just perturbating certain FCs that capture little semantic information. With FAA-generated samples, the training can continue the random walk and drift into an area with a flat loss landscape, leading to more robust domain adaptation. Extensive experiments over multiple domain adaptation tasks show that RDA can work with different computer vision tasks with superior performance.

Installation

  1. Conda enviroment:
conda create -n rda python=3.6
conda activate rda
conda install -c menpo opencv
pip install torch==1.0.0 torchvision==0.2.1
  1. Clone the ADVENT:
git clone https://github.com/valeoai/ADVENT.git
pip install -e ./ADVENT
  1. Clone the CRST:
git clone https://github.com/yzou2/CRST.git
pip install packaging h5py
  1. Clone the repo:
https://github.com/jxhuang0508/RDA.git
pip install -e ./RDA
cp RDA/crst/*py CRST
cp RDA/crst/deeplab/*py CRST/deeplab

Prepare Dataset

  • GTA5: Please follow the instructions here to download images and semantic segmentation annotations. The GTA5 dataset directory should have this basic structure:
RDA/data/GTA5/                               % GTA dataset root
RDA/data/GTA5/images/                        % GTA images
RDA/data/GTA5/labels/                        % Semantic segmentation labels
...
  • Cityscapes: Please follow the instructions in Cityscape to download the images and validation ground-truths. The Cityscapes dataset directory should have this basic structure:
RDA/data/Cityscapes/                         % Cityscapes dataset root
RDA/data/Cityscapes/leftImg8bit              % Cityscapes images
RDA/data/Cityscapes/leftImg8bit/val
RDA/data/Cityscapes/gtFine                   % Semantic segmentation labels
RDA/data/Cityscapes/gtFine/val
...

Pre-trained models

Pre-trained models can be downloaded here and put in RDA/pretrained_models

Evaluation

To evaluate RDA_FAA_T:

cd RDA/CRST
python evaluate_advent.py --test-flipping --data-dir ../RDA/data/Cityscapes --restore-from ../RDA/pretrained_models/model_FAA_T.pth --save ../RDA/experiments/GTA2Cityscapes_RDA

To evaluate RDA_FAA_S_T:

cd RDA/CRST
python evaluate_advent.py --test-flipping --data-dir ../RDA/data/Cityscapes --restore-from ../RDA/pretrained_models/model_FAA_S_T.pth.pth --save ../RDA/experiments/GTA2Cityscapes_RDA

Training

To train RDA_FAA_T:

cd RDA/rda/scripts
python train.py --cfg configs/RDA.yml

To test RDA_FAA_T:

cd RDA/CRST
./test_best.sh

Acknowledgements

This codebase is heavily borrowed from ADVENT and CRST.

Contact

If you have any questions, please contact: [email protected]

You might also like...
Semi-supervised Domain Adaptation via Minimax Entropy
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

RoMA: Robust Model Adaptation for Offline Model-based Optimization

RoMA: Robust Model Adaptation for Offline Model-based Optimization Implementation of RoMA: Robust Model Adaptation for Offline Model-based Optimizatio

Progressive Domain Adaptation for Object Detection
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

Code release for
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

Code to reproduce the experiments in the paper
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

PyTorch code for the paper
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Self-Supervised Learning for Domain Adaptation on Point-Clouds
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

Comments
  • About 3D image

    About 3D image

    Hi jxhuang0508! Recently I am trying to reimplement your idea for 3D image situation. However, the results isn't well. Do you have any suggestion during training FAA module or something we should be careful when we expand to the 3D problem?

    Another question, I saw your code and observed that you only take "one batch" data from target domain for FAA's reference, is that correct?

    And about inference phase, do we still need to process FAA module? Thanks!

    opened by adchentc 0
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Generic U-Net Tensorflow implementation for image segmentation

Tensorflow Unet Warning This project is discontinued in favour of a Tensorflow 2 compatible reimplementation of this project found under https://githu

Joel Akeret 1.8k Dec 10, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Pascal Vizeli 2 Dec 09, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
AlphaBot2 Pi Core software for interfacing with the various components.

AlphaBot2-Pi-Core AlphaBot2 Pi Core software for interfacing with the various components. This project is currently a W.I.P. I will update this readme

KyleDev 1 Feb 13, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022