PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

Overview

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

This repo presents PyTorch implementation of Multi-targe Graph Domain Adaptation framework from "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" CVPR 2021. The framework is pivoted around two key concepts: graph feature aggregation and curriculum learning (see pipeline below or project web-page).

Results

Environment

Python >= 3.6
PyTorch >= 1.8.1

To install dependencies run (line 1 for pip or line 2 for conda env):

pip install -r requirements.txt
conda install --file requirements.txt

Disclaimer. This code has been tested with cuda toolkit 10.2. Please install PyTorch as supported by your machine.

Datasets

Four datasets are supported:

To run this code, one must check if the txt file names in data/<dataset_name> are matching with the downloaded domain folders. For e.g., to run OfficeHome, the domain sub-folders should be art/, clipart/, product/ and real/ corresponding to art.txt, clipart.txt, product.txt and real.txt that can be found in the data/office-home/.

Methods

  • CDAN
  • CDAN+E

Commands

Office-31

python src/main.py \
        --method 'CDAN' \
        --encoder 'ResNet50' \
 	--dataset 'office31' \
 	--data_root [your office31 folder] \
 	--source 'dslr' \
 	--target 'webcam' 'amazon' \
 	--source_iters 200 \
 	--adapt_iters 3000 \
 	--finetune_iters 15000 \
 	--lambda_node 0.3 \
 	--output_dir 'office31-dcgct/dslr_rest/CDAN'

Office-Home

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'office-home' \
	--data_root [your OfficeHome folder] \
	--source 'art' \
	--target 'clipart' 'product' 'real' \
	--source_iters 500 \
	--adapt_iters 10000 \
	--finetune_iters 15000 \
	--lambda_node 0.3 \
	--output_dir 'officeHome-dcgct/art_rest/CDAN' 

PACS

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet50' \
	--dataset 'pacs' \
	--data_root [your PACS folder] \
	--source 'photo' \
	--target 'cartoon' 'art_painting' 'sketch' \
	--source_iters 200 \
	--adapt_iters 3000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'pacs-dcgct/photo_rest/CDAN'  

DomainNet

python src/main.py \
	--method 'CDAN' \
	--encoder 'ResNet101' \
	--dataset 'domain-net' \
	--data_root [your DomainNet folder] \
	--source 'sketch' \
	--target 'clipart' 'infograph' 'painting' 'real' 'quickdraw' \
	--source_iters 5000 \
	--adapt_iters 50000 \
	--finetune_iters 15000  \
	--lambda_node 0.1 \
	--output_dir 'domainNet-dcgct/sketch_rest/CDAN'

Citation

If you find our paper and code useful for your research, please consider citing our paper.

@inproceedings{roy2021curriculum,
  title={Curriculum Graph Co-Teaching for Multi-target Domain Adaptation},
  author={Roy, Subhankar and Krivosheev, Evgeny and Zhong, Zhun and Sebe, Nicu and Ricci, Elisa},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Evgeny
Evgeny
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022