Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Overview

Instance-wise Occlusion and Depth Orders in Natural Scenes

Official source code. Appears at CVPR 2022

This repository provides a new dataset, named InstaOrder, that can be used to understand the geometrical relationships of instances in an image. The dataset consists of 2.9M annotations of geometric orderings for class-labeled instances in 101K natural scenes. The scenes were annotated by 3,659 crowd-workers regarding (1) occlusion order that identifies occluder/occludee and (2) depth order that describes ordinal relations that consider relative distance from the camera. This repository also introduce a geometric order prediction network called InstaOrderNet, which is superior to state-of-the-art approaches.

Installation

This code has been developed under Anaconda(Python 3.6), Pytorch 1.7.1, torchvision 0.8.2 and CUDA 10.1. Please install following environments:

# build conda environment
conda create --name order python=3.6
conda activate order

# install requirements
pip install -r requirements.txt

# install COCO API
pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

Visualization

Check InstaOrder_vis.ipynb to visualize InstaOrder dataset including instance masks, occlusion order, and depth order.

Training

The experiments folder contains train and test scripts of experiments demonstrated in the paper.

To train {MODEL} with {DATASET},

  1. Download {DATASET} following this.
  2. Set ${base_dir} correctly in experiments/{DATASET}/{MODEL}/config.yaml
  3. (Optional) To train InstaDepthNet, download MiDaS-v2.1 model-f6b98070.pt under ${base_dir}/data/out/InstaOrder_ckpt
  4. Run the script file as follow:
    sh experiments/{DATASET}/{MODEL}/train.sh
    
    # Example of training InstaOrderNet^o (Table3 in the main paper) from the scratch
    sh experiments/InstaOrder/InstaOrderNet_o/train.sh

Inference

  1. Download pretrained models InstaOrder_ckpt.zip (3.5G) and unzip files following the below structure. Pretrained models are named by {DATASET}_{MODEL}.pth.tar

    ${base_dir}
    |--data
    |    |--out
    |    |    |--InstaOrder_ckpt
    |    |    |    |--COCOA_InstaOrderNet_o.pth.tar
    |    |    |    |--COCOA_OrderNet.pth.tar
    |    |    |    |--COCOA_pcnet_m.pth.tar
    |    |    |    |--InstaOrder_InstaDepthNet_d.pth.tar
    |    |    |    |--InstaOrder_InstaDepthNet_od.pth.tar
    |    |    |    |--InstaOrder_InstaOrderNet_d.pth.tar
    |    |    |    |--InstaOrder_InstaOrderNet_o.pth.tar
    |    |    |    |--InstaOrder_InstaOrderNet_od.pth.tar
    |    |    |    |--InstaOrder_OrderNet.pth.tar
    |    |    |    |--InstaOrder_OrderNet_ext.pth.tar  
    |    |    |    |--InstaOrder_pcnet_m.pth.tar
    |    |    |    |--KINS_InstaOrderNet_o.pth.tar
    |    |    |    |--KINS_OrderNet.pth.tar
    |    |    |    |--KINS_pcnet_m.pth.tar
    
  2. (Optional) To test InstaDepthNet, download MiDaS-v2.1 model-f6b98070.pt under ${base_dir}/data/out/InstaOrder_ckpt

  3. Set ${base_dir} correctly in experiments/{DATASET}/{MODEL}/config.yaml

  4. To test {MODEL} with {DATASET}, run the script file as follow:

    sh experiments/{DATASET}/{MODEL}/test.sh
    
    # Example of reproducing the accuracy of InstaOrderNet^o (Table3 in the main paper)
    sh experiments/InstaOrder/InstaOrderNet_o/test.sh
    

Datasets

InstaOrder dataset

To use InstaOrder, download files following the below structure

${base_dir}
|--data
|    |--COCO
|    |    |--train2017/
|    |    |--val2017/
|    |    |--annotations/
|    |    |    |--instances_train2017.json
|    |    |    |--instances_val2017.json
|    |    |    |--InstaOrder_train2017.json
|    |    |    |--InstaOrder_val2017.json    

COCOA dataset

To use COCOA, download files following the below structure

${base_dir}
|--data
|    |--COCO
|    |    |--train2014/
|    |    |--val2014/
|    |    |--annotations/
|    |    |    |--COCO_amodal_train2014.json 
|    |    |    |--COCO_amodal_val2014.json
|    |    |    |--COCO_amodal_val2014.json

KINS dataset

To use KINS, download files following the below structure

${base_dir}
|--data
|    |--KINS
|    |    |--training/
|    |    |--testing/
|    |    |--instances_val.json
|    |    |--instances_train.json
  

DIW dataset

To use DIW, download files following the below structure

${base_dir}
|--data
|    |--DIW
|    |    |--DIW_test/
|    |    |--DIW_Annotations
|    |    |    |--DIW_test.csv   

Citing InstaOrder

If you find this code/data useful in your research then please cite our paper:

@inproceedings{lee2022instaorder,
  title={{Instance-wise Occlusion and Depth Orders in Natural Scenes}},
  author={Hyunmin Lee and Jaesik Park},
  booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

We have reffered to and borrowed the implementations from Xiaohang Zhan

MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Python implementation of Lightning-rod Agent, the Stack4Things board-side probe

Iotronic Lightning-rod Agent Python implementation of Lightning-rod Agent, the Stack4Things board-side probe. Free software: Apache 2.0 license Websit

2 May 19, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
A Closer Look at Reference Learning for Fourier Phase Retrieval

A Closer Look at Reference Learning for Fourier Phase Retrieval This repository contains code for our NeurIPS 2021 Workshop on Deep Learning and Inver

Tobias Uelwer 1 Oct 28, 2021
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023