Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Overview

ETSformer - Pytorch

Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Install

$ pip install etsformer-pytorch

Usage

import torch
from etsformer_pytorch import ETSFormer

model = ETSFormer(
    time_features = 4,
    model_dim = 512,                # in paper they use 512
    embed_kernel_size = 3,          # kernel size for 1d conv for input embedding
    layers = 2,                     # number of encoder and corresponding decoder layers
    heads = 8,                      # number of exponential smoothing attention heads
    K = 4,                          # num frequencies with highest amplitude to keep (attend to)
    dropout = 0.2                   # dropout (in paper they did 0.2)
)

timeseries = torch.randn(1, 1024, 4)

pred = model(timeseries, num_steps_forecast = 32) # (1, 32, 4) - (batch, num steps forecast, num time features)

For using ETSFormer for classification, using cross attention pooling on all latents and level output

import torch
from etsformer_pytorch import ETSFormer, ClassificationWrapper

etsformer = ETSFormer(
    time_features = 1,
    model_dim = 512,
    embed_kernel_size = 3,
    layers = 2,
    heads = 8,
    K = 4,
    dropout = 0.2
)

adapter = ClassificationWrapper(
    etsformer = etsformer,
    dim_head = 32,
    heads = 16,
    dropout = 0.2,
    level_kernel_size = 5,
    num_classes = 10
)

timeseries = torch.randn(1, 1024)

logits = adapter(timeseries) # (1, 10)

Citation

@misc{woo2022etsformer,
    title   = {ETSformer: Exponential Smoothing Transformers for Time-series Forecasting}, 
    author  = {Gerald Woo and Chenghao Liu and Doyen Sahoo and Akshat Kumar and Steven Hoi},
    year    = {2022},
    eprint  = {2202.01381},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • What are your thoughts on using latents for additional classification task

    What are your thoughts on using latents for additional classification task

    Hi! I was wondering if you have thought about aggregating seasonal and growth latents for additional tasks (for example classification)? What are the possible ways to bring latents into single feature vector in your opinion? The easiest one would be just get the mean along layers and time dimensions but that seams to be too naive. Another idea I had it to use Cross Attention mechanic with single time query key to aggregate latents:

    all_latents = torch.cat([latent_growths, latent_seasonals], dim=-1)
    all_latents = rearrange(all_latents, 'b n l d -> (b l) n d')
    # q = nn.Parameter(torch.randn(all_latents_dim))
    q = repeat(q, 'd -> b 1 d', b = all_latents.shape[0])
    agg_latent = cross_attention(query=q, context=all_latents)
    agg_latent = rearrange(all_latents, '(b l) n d -> b (l n) d')
    agg_latent = agg_latent.mean(dim=1) # may be we should have done it before cross attention?
    

    Would be great to hear your thoughts

    opened by inspirit 15
  • Pre LayerNorm might be required for k,v?

    Pre LayerNorm might be required for k,v?

    https://github.com/lucidrains/ETSformer-pytorch/blob/2561053007e919409b3255eb1d0852c68799d24f/etsformer_pytorch/etsformer_pytorch.py#L440

    In my early tests I see some instability in training results, I was wondering if it might be good idea to LayerNorm latents before constructing key and values?

    opened by inspirit 5
  • growth_term calculation error

    growth_term calculation error

    https://github.com/lucidrains/ETSformer-pytorch/blob/e1d8514b44d113ead523aa6307986833e68eecc5/etsformer_pytorch/etsformer_pytorch.py#L233-L235

    It looks like you are not using growth and growth_smoothing_weightsto calculate growth_term

    opened by inspirit 4
  • Backward gradient error

    Backward gradient error

    Hello,

    i was trying to run the provided class and see following error: Function ScatterBackward0 returned an invalid gradient at index 1 - got [64, 4, 128] but expected shape compatible with [64, 33, 128]

    model = ETSFormer(
                time_features = 9,
                model_dim = 128,
                embed_kernel_size = 3,
                layers = 2,
                heads = 4,
                K = 4,
                dropout = 0.2
            )
    

    input = torch.rand(64, 64, 9) x = model(input, num_steps_forecast = 16)

    opened by inspirit 3
  • Does ETS-Former allow adding features

    Does ETS-Former allow adding features

    @lucidrains Thanks for making the code of the model available!

    In your paper, you state that the model infers seasonal patterns itself, so that there is no need to add time features like week, month, etc.

    Still, to increase the applicability of your approach, does the current implementation allow to add any (time-invariant and time-varying) features, e.g., categorical or numeric?

    opened by StatMixedML 2
  • wrong order of arguments

    wrong order of arguments

    https://github.com/lucidrains/ETSformer-pytorch/blob/2e0d465576c15fc8d84c4673f93fdd71d45b799c/etsformer_pytorch/etsformer_pytorch.py#L327

    you pass latents on wrong order to Level module: according to forward method first should be growth and then seasonal

    opened by inspirit 1
  • Clarification regarding data pre-processing

    Clarification regarding data pre-processing

    Hello,

    I was trying to run the ETSformer for ETT dataset. The paper mentions that the dataset is split as 60/20/20 for train, validation and test. Could you give some insight as to how the dataset split is happening in the code.

    Thank you.

    opened by vageeshmaiya 2
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Advanced yabai wooting scripts

Yabai Wooting scripts Installation requirements Both https://github.com/xiamaz/python-yabai-client and https://github.com/xiamaz/python-wooting-rgb ne

Max Zhao 3 Dec 31, 2021
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Code for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelines with Query Variation Generators"

Query Variation Generators This repository contains the code and annotation data for the ECIR'22 paper "Evaluating the Robustness of Retrieval Pipelin

Gustavo Penha 12 Nov 20, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022