Replication attempt for the Protein Folding Model

Overview

RGN2-Replica (WIP)

To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding for particular use when no evolutionary homologs are available (ie. for protein design).

Install

$ pip install rgn2-replica

To load sample dataset

from datasets import load_from_disk
ds = load_from_disk("data/ur90_small")
print(ds['train'][0])

To convert to pandas for exploration

df = ds['train'].to_pandas()
df.sample(5)

To train ProteinLM

Run the following command with default parameters

python -m scripts.lmtrainer

This will start the run using sample dataset in repo directory on CPU.

TO-DO LIST: ordered by priority

  • Provide basic package and file structure

  • RGN2:

    • Contribute adaptation of RGN1 for different ops
      • Simple LSTM with:
        • Inputs (B, L, emb_dim)
        • Outputs (B, L, 4) (4 features which should be outputs of linear projections)
    • Find a good (and reproducible) training scheme
    • Benchmark regression vs classification of torsional alphabet
  • Language Model:

  • To be merged when first versions of RGN are ready:

    • Geometry module
    • Adapt functionality from MP-NeRF:
      • Sidechain building
      • Full backbone from CA
      • Fast loss functions and metrics
      • Modifications to convert LSTM cell into RGN cell
  • Contirbute trainer classes / functionality.

    • Sequence preprocessing for AminoBERT
      • inverted fragments
      • sequence masking
      • loss function wrapper v1 by @DrHB
      • Sample dataset by @gurvindersingh
      • Dataloder
      • ...
  • Contribute Data Infra for training:

  • Contribute Rosetta Scripts ( contact me by email ([email protected]) / discord to get a key for Rosetta if interested in doing this part. )

  • NOTES:

  • Use functionality provided in MP-NeRF wherever possible (avoid repetition).

Contribute:

Hey there! New ideas are welcome: open/close issues, fork the repo and share your code with a Pull Request.

Currently the main discussions / conversation about the model development is happening in this discord server under the /self-supervised-learning channel.

Clone this project to your computer:

git clone https://github.com/EricAlcaide/pysimplechain

Please, follow this guideline on open source contribtuion

Citations:

@article {Chowdhury2021.08.02.454840,
    author = {Chowdhury, Ratul and Bouatta, Nazim and Biswas, Surojit and Rochereau, Charlotte and Church, George M. and Sorger, Peter K. and AlQuraishi, Mohammed},
    title = {Single-sequence protein structure prediction using language models from deep learning},
    elocation-id = {2021.08.02.454840},
    year = {2021},
    doi = {10.1101/2021.08.02.454840},
    publisher = {Cold Spring Harbor Laboratory},
    URL = {https://www.biorxiv.org/content/early/2021/08/04/2021.08.02.454840},
    eprint = {https://www.biorxiv.org/content/early/2021/08/04/2021.08.02.454840.full.pdf},
    journal = {bioRxiv}
}

@article{alquraishi_2019,
	author={AlQuraishi, Mohammed},
	title={End-to-End Differentiable Learning of Protein Structure},
	volume={8},
	DOI={10.1016/j.cels.2019.03.006},
	URL={https://www.cell.com/cell-systems/fulltext/S2405-4712(19)30076-6}
	number={4},
	journal={Cell Systems},
	year={2019},
	pages={292-301.e3}
Owner
Eric Alcaide
Y el mayor bien es pequeño; que toda la vida es sueño, y los sueños, sueños son.
Eric Alcaide
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022