Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

Related tags

Deep LearningCrossVIS
Overview
QueryInst-VIS Demo
QueryInst-VIS Demo
  • TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich contextual information across video frames, and obtains great trade-off between accuracy and speed for video instance segmentation.

Crossover Learning for Fast Online Video Instance Segmentation


Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

by Shusheng Yang*, Yuxin Fang*, Xinggang Wang†, Yu Li, Chen Fang, Ying Shan, Bin Feng, Wenyu Liu.

(*) equal contribution, (†) corresponding author.

ICCV2021 Paper


QueryInst-VIS Demo

Main Results on YouTube-VIS 2019 Dataset

  • We provide both checkpoints and codalab server submissions in the bellow link.
Name AP [email protected] [email protected] [email protected] [email protected] download
CrossVIS_R_50_1x 35.5 55.1 39.0 35.4 42.2 baidu(keycode: a0j0) | google
CrossVIS_R_101_1x 36.9 57.8 41.4 36.2 43.9 baidu(keycode: iwwo) | google

Getting Started

Installation

First, clone the repository locally:

git clone https://github.com/hustvl/CrossVIS.git

Then, create python virtual environment with conda:

conda create --name crossvis python=3.7.2
conda activate crossvis

Install torch 1.7.0 and torchvision 0.8.1:

pip install torch==1.7.0 torchvision==0.8.1

Follow the instructions to install detectron2. Please install detectron2 with commit id 9eb4831 if you have any issues related to detectron2.

Then install AdelaiDet by:

cd CrossVIS
python setup.py develop

Preparation

  • Download YouTube-VIS 2019 dataset from here, the overall directory hierarchical structure is:
CrossVIS
├── datasets
│   ├── youtubevis
│   │   ├── train
│   │   │   ├── 003234408d
│   │   │   ├── ...
│   │   ├── val
│   │   │   ├── ...
│   │   ├── annotations
│   │   │   ├── train.json
│   │   │   ├── valid.json
  • Download CondInst 1x pretrained model from here

Training

  • Train CrossVIS R-50 with single GPU:
python tools/train_net.py --config configs/CrossVIS/R_50_1x.yaml MODEL.WEIGHTS $PATH_TO_CondInst_MS_R_50_1x
  • Train CrossVIS R-50 with multi GPUs:
python tools/train_net.py --config configs/CrossVIS/R_50_1x.yaml --num-gpus $NUM_GPUS MODEL.WEIGHTS $PATH_TO_CondInst_MS_R_50_1x

Inference

python tools/test_vis.py --config-file configs/CrossVIS/R_50_1x.yaml --json-file datasets/youtubevis/annotations/valid.json --opts MODEL.WEIGHTS $PATH_TO_CHECKPOINT

The final results will be stored in results.json, just compress it with zip and upload to the codalab server to get the performance on validation set.

Acknowledgement ❤️

This code is mainly based on detectron2 and AdelaiDet, thanks for their awesome work and great contributions to the computer vision community!

Citation

If you find our paper and code useful in your research, please consider giving a star and citation 📝 :

@InProceedings{Yang_2021_ICCV,
    author    = {Yang, Shusheng and Fang, Yuxin and Wang, Xinggang and Li, Yu and Fang, Chen and Shan, Ying and Feng, Bin and Liu, Wenyu},
    title     = {Crossover Learning for Fast Online Video Instance Segmentation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {8043-8052}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
DISTIL: Deep dIverSified inTeractIve Learning.

DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.

decile-team 110 Dec 06, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022